[obsidian] vault backup: 2023-08-09 16:37:54[

This commit is contained in:
Tomoya(obsidian) 2023-08-09 16:37:54 +09:00
parent da7a53ccfa
commit 34f8052c81
2 changed files with 29 additions and 16 deletions

View File

@ -54,6 +54,9 @@ pictures and a bit of history
https://ibm-1401.info/GermaniumAlloy.html
#### Yahoo Group "Home Transistor" on archive.org
https://web.archive.org/web/20121027074518/http://groups.yahoo.com/group/home_transistor/
### その他、エクストリームDIY

View File

@ -16,28 +16,38 @@ https://www.andaquartergetsyoucoffee.com/wp/wp-content/uploads/2009/05/zinc-oxid
これらのデバイスのひとつと機能する薄膜トランジスタとの違いは、種類ではなく程度の違いだと私は信じている。
これらの実験は、さまざまな情報源から得た情報に基づいている。[[Scientific American 1970年6月号]]の「アマチュア・サイエンティスト」欄には、[[Roger baker]]が製作した硫化カドミウム・ベースの装置が紹介されている。
これらの実験は、さまざまな情報源から得た情報に基づいている。[[Scientific American 1970年6月号]]の「アマチュア・サイエンティスト」欄には、[[Roger Baker]]が製作した硫化カドミウム・ベースの装置が紹介されている。
[[B. Norris]](オレゴン州立大学)の学位論文には、酸化亜鉛薄膜を製造するためのほとんどの情報が記載されている。 さらに、ウェブ上には他にも多くの論文があり、その多くが有用で興味深い詳細を提供して いる。
図1は酸化亜鉛薄膜デバイスの一例です。この特定のデバイスを作成するために使用されたプロセスは、7ページの「液体誘電体デバイスの作成に使用された手順」と題されたセクションに文書化されています。酸化亜鉛薄膜が不細工で不均一なのは、顕微鏡スライド上に前駆体溶液を分配するために使用された簡略化された方法によるところが大きい。しかし、電界効果を実証するには十分である。スライドを細かく切り刻むのではなく、複数のソースドレイン・コンタクトを同じスライド上に構築した。これは、酸化亜鉛膜の抵抗率が非常に高いため、少なくともこれまでに作られた限られたデバイスではうまくいった。左から数えて最初のペアは、短絡されているので役に立たない。2番目のペアは、接着剤ベースの誘電体で構成されたテスト・デバイスとして使用されており、図3が生成されたデータはこの特定のデバイスから得られたものである。
自家製液状ポリマー誘電デバイス
### DIY液状ポリマー誘電デバイス
私は[[Roger Baker]]が説明したような装置を作ろうと時間をかけてきた。彼が説明した装置からの最も大きな変更点は、硫化カドミウムの代わりに酸化亜鉛または酸化亜鉛スズを使用したことである。その他の元記事からの変更点は、ビニールセメントの代わりにHelping Hand Household Adhesiveやその他の液体ポリマーを使用したことと、インジウ ムのソースとドレインの接点の代わりにカーボンベースの導電性接着剤Anders Products社 製の「Wire Glue」を使用したことである。導電性インクや接着剤であれば、フィルムに密着し、適度に低抵抗の接続を作ることができる限り、どのようなものでも機能すると思います。ヘルピング・ハンド接着剤に関する情報は、容器に印刷されているものだけで、アセトン、メチルエチルケトン、フタル酸ジブチルが含まれています。ベイカーが説明したデバイスをモデルにして、上記の部品を使用したデバイスを作ろうとした私の初期の試みは、すべて失敗に終わった。9ページの「テスト回路」セクションにあるテスト回路を使用しても、ゲート電圧を変化させてもデバイスのドレインに流れる電流Id に変化が見られないか、さもなければIdの変化は電圧変化の逆数であったつまり、ゲート電圧を上げるとIdは減少し、その逆は、少なくともデバイスのゲートリーク電流が大きい場合には、抵抗効果と容量効果によって完全に説明できる効果であった。ある時点で、接着剤のゲート誘電体が完全に乾く前にデバイスの実験を始め、接着剤が完全に硬化する前に 、Idがゲート電圧と同じ方向に変化することを発見しましたつまり、ゲート電圧が増加するとIdが増加し、その逆も同様です。これは純粋に受動的な抵抗効果や容量効果だけでは説明できず、電界効果の実証であると私は考えている。
私は[[Roger Baker]]が説明したような装置を作ろうと時間をかけてきた。彼が説明した装置からの最も大きな変更点は、硫化カドミウムの代わりに酸化亜鉛または酸化亜鉛スズを使用したことである。その他の元記事からの変更点は、ビニールセメントの代わりにHelping Hand Household Adhesiveやその他の液体ポリマーを使用したことと、インジウムのソースとドレインの接点の代わりにカーボンベースの導電性接着剤Anders Products社 製の「Wire Glue」を使用したことである。導電性インクや接着剤であれば、フィルムに密着し、適度に低抵抗の接続を作ることができる限り、どのようなものでも機能すると思。ヘルピング・ハンド接着剤に関する情報は、容器に印刷されているものだけで、アセトン、メチルエチルケトン、フタル酸ジブチルが含まれています。
図2は、私が製作したほとんどのデバイスの一般的な構造を示す概略断面図である。ゲートが
ページ 4の
19
誘電体の上にある明確な領域でないことを除けば、基本的にロジャー・ベイカーが説明した設
ベイカーが説明したデバイスをモデルにして、上記の部品を使用したデバイスを作ろうとした私の初期の試みは、すべて失敗に終わった。9ページの「テスト回路」セクションにあるテスト回路を使用しても、ゲート電圧を変化させてもデバイスのドレインに流れる電流Id に変化が見られないか、さもなければIdの変化は電圧変化の逆数であったつまり、ゲート電圧を上げるとIdは減少し、その逆は、少なくともデバイスのゲートリーク電流が大きい場合には、抵抗効果と容量効果によって完全に説明できる効果であった。ある時点で、接着剤のゲート誘電体が完全に乾く前にデバイスの実験を始め、接着剤が完全に硬化する前に 、Idがゲート電圧と同じ方向に変化することを発見しましたつまり、ゲート電圧が増加するとIdが増加し、その逆も同様です。これは純粋に受動的な抵抗効果や容量効果だけでは説明できず、電界効果の実証であると私は考えている。
図2は、私が製作したほとんどのデバイスの一般的な構造を示す概略断面図である。ゲートが誘電体の上にある明確な領域でないことを除けば、基本的に[[Roger Baker]]が説明した設
計です。むしろ、テスト回路のゲート抵抗をデバイスに接続するために使用するワイヤーは、
単に誘電体に刺さっているだけです。デバイスが液体誘電体を使って作られている限り、これ
はそれなりにうまく機能し、ゲートがソースやドレイン、半導体層とショートする可能性を劇
的に減らすことができる。私は、誘電体が液体またはゲル化した状態でなければ機能するトッ
プゲート・タイプの設計を構築することができませんでした。事実上、ポリマーはゲートと誘
電体の両方の役割を果たしているようです。ベイカー氏の論文を読んでも、彼のデバイスに同
じ制限があるかどうかは判断できなかった。
図3は、製作直後のデバイスの動作を示すグラフである。ゲート抵抗の電圧」と表示さ
れたトレースは、経時的にゲートに印加される電圧を示すため、事後に手動で追加したもの
単に誘電体に刺さっているだけです。デバイスが液体誘電体を使って作られている限り、これはそれなりにうまく機能し、ゲートがソースやドレイン、半導体層とショートする可能性を劇的に減らすことができる。私は、誘電体が液体またはゲル化した状態でなければ機能するトップゲート・タイプの設計を構築することができませんでした。事実上、ポリマーはゲートと誘電体の両方の役割を果たしているようです。ベイカー氏の論文を読んでも、彼のデバイスに同じ制限があるかどうかは判断できなかった。
図3は、製作直後のデバイスの動作を示すグラフである。「Voltage at Gate Registor」と表示されたトレースは、経時的にゲートに印加される電圧を示すため、事後に手動で追加したもの
である。そのため、Id トレースに対する変化のタイミングは、数秒程度しか正確ではありませ
ん。Id A "と表示されたトレースは、同じ時間のデバイスのドレインへの電流を示す。
ん。Id A "と表示されたトレースは、同じ時間のデバイスのドレインへの電流を示す。
図3のグラフの最大の特徴は、ゲート電圧を48ボルトに設定するとId が増加し、48ボルトに設 定するとId が減少することである。これは電界効果と一致しており、純粋な受動部品を使って モデル化できるデバイスでは説明できないと私は考えている。 グラフの次に重要な特徴は、全体のId が明らかに指数関数的に減少しているという事実である 。これは接着剤の乾燥によるものだと思う。翌日、もう一度測定してみると、電界効果は完全 に消えていた。 図1のデバイスが機能するのは、高分子誘電体が液体であるからだと思います。液体誘電体 は、ベル研究所のトランジスタ開発において非常に興味深い役割を果たした。液体誘電体は 、液体内のイオン移動によって半導体の表面状態を圧倒できることが偶然発見されたのです。これによって、固体誘電体を使用した同等のデバイスと比較して、電界効果の強度が劇的 に増大する。液体誘電体の主な欠点もイオンマイグレーションによるもので、これに依存す るデバイスは実に、実に、遅い。 誘電体接着剤のいいところは、乾燥したら簡単に剥がせることで、同じ基本デバイスを接着 剤の量や配置を変えて再利用できる。これは図1のデバイスで何度か行ったが、酸化亜鉛層 を完全にダメにしてしまった。
あまりにも多くの場所に傷がついてしまうのだ。誘電体接着剤のもどかしさのひとつは、一 般的に、接着剤を最初に塗布したときに導電性が高すぎて、電界効果を最初に示さないデバ イスができることだ。また、接着剤の配置も重要である。接着剤をできるだけ露出した酸化 亜鉛層にとどめ、ソースとドレインのコンタクトの間に適切に配置するよう注意するだけで 、より優れたデバイスを作ることができた。図4は、接着剤誘電体ベース・デバイス で私がこれまでに得た最高の結果を示しているゲート電圧は4848ボルトの間で変化させ たので、写真には写っていない)。
液体ポリマー誘電体として機能することが分かっている他のポリマー材料には、ポリマークレ イスカルピー、液体スカルピーデバイスは極めて不安定だが、5分間エポキシなどが ある。私が作った液状ポリマーベースのデバイスは、どれも2、3時間以上は動かなかった。
### 個体誘電体デバイス
私が製作した最初の、そして現在までのところ唯一の固体誘電体ベース・デバイスは、基板 とゲート誘電体の両方に#0の顕微鏡スライド・カバー・スリップを使用した。図5は、この デバイスの概略図である。
図6にソース側とドレイン側を示したこのデバイスは、液状ポリマー誘電体デバイスに使用 した酸化亜鉛薄膜の作製と基本的に同じ手順に従って、酸化亜鉛スズ薄膜で作製した。唯一 の例外は、前駆体溶液に0.05グラムの塩化スズ(II)と数滴の酢酸を加えたことと、2つのデバ イスの構造の違いによって必要になった明らかな変更だけである。この前駆体溶液は混ぜた 後も濁ったままで、スピンコーティングでも非常に粗い膜ができるため、私はこの前駆体溶 液から見栄えの良い薄膜を作ることに成功していない。しかし、純粋な酸化亜鉛薄膜と比較 すると、これらの薄膜はより透明で、可視光線に対する光伝導感度が強い。そのため、暗闇 でテストする必要がある。とはいえ、この構成で純粋な酸化亜鉛膜を試したことがないので 、このデバイスで純粋な酸化亜鉛よりも酸化亜鉛スズを使う利点があるかどうかはわからな い。
図7は、このデバイスが示す電界効果が極めて小さいことを示している。ゲート電圧 の96ボルトの変化に対するId の変化は約40nAである。再度、「ゲート抵抗の電圧」トレース を手動でグラフに追加した。このデバイスの感度は小さいが、#0カバー・スリップの厚さは 約0.1mmで、薄膜トランジスタに通常期待される厚さの約1000倍である。他の多くの要因の 中でも、Id は絶縁ソリディエレクトリックゲートFETの誘電体厚さに反比例する。残念なこ とに、カバー・スリップが10倍でも薄ければ、本質的に動作が不可能になるため、このデバ イスの設計はほとんど行き詰まる。しかし、動作に液体誘電体を必要とせずに電界効果を示 す自作デバイスを作ることが可能であることを実証するには十分であった。
図6のデバイスは約4週間前に作られ、それ以来比較的安定している。一般的な酸化亜鉛薄膜 と同様、光、熱、温度、湿気、そしておそらく周囲の空気中の酸素濃度に敏感である。酸化 亜鉛薄膜は持続的な光伝導性を示し、光によって誘起された伝導性が消え去るのに非常に長 い時間がかかる。この特定のデバイスの場合、暗い容器に入れれば、数日のうちにサレイン 抵抗は測定可能なほど低下する。 このデバイスのもう一つの注目すべき点は、実効ゲート抵抗が極めて高いことである。ゲー ト抵抗を100キロ・オームから50メガ・オームに変更したときに液体ゲート・デバイスで観察 されるId の著しい変化とは異なり、このデバイスではゲート抵抗を同じように変更しても、Id の変化は検出できない