diff --git a/content/Max Mathews Full Interview by NAMM Oral History Program.md b/content/Max Mathews Full Interview by NAMM Oral History Program.md index cc1f8501..650c0bd0 100644 --- a/content/Max Mathews Full Interview by NAMM Oral History Program.md +++ b/content/Max Mathews Full Interview by NAMM Oral History Program.md @@ -116,7 +116,7 @@ Absolutely. Tell me about music too. I'm sort of curious about that.  Max V. Mathews 13:10 -Well, Music 1 had only one voice and only one wave shape, a triangular wave, an equal slope up and equal slope down. And the reason was that the fastest computer at the time, the [[IBM 704]], was still very slow. And the only thing it could do a tall fast was addition. And if you think about it, each sample could be computed from the last sample by simply adding a number to it. So the time was one addition per sample. Well, the only thing the composer had at his disposal was the steepness of the slope, how big the number was. So that would determine how loud the waveform was, and the pitch that you were going to make, and the duration of the note. And so that wasn't very much, and you didn't have any polyphony there.So they asked for making a program that could have more voices. And I made one with four voices. And I made one where you could have a controlled wave shape so that you could get different timbers as much as the wave shape contributes to the timbre. Now, in a computer, calculating a sine wave, or a damp sine wave, or a complicated wave is pretty slow, especially in those days. So I invented the wavetable oscillator where you would calculate one pitch period of the wave and store it in the computer memory, and then read this out at various pitches so that this then could be done basically by looking up one location in the computer memory, which is fast. And I also put a amplitude control on the thing by multiplying the wave shape by number. So this cost a multiplication and a couple of additions. So it was more expensive. By that time, computers had gotten maybe 10 or 100 times as fast as the first computer. So it really was practical. So that was music too. And some thing that most listeners would call music came out of that. And some professional composers used it. But they always wanted more. In particular, they didn't have any things like a controlled attack and decay, or vibrato, or filtering, or noise, for that matter. So it was a perfectly reasonable request.But I was unwilling to contemplate even adding these kind of code, one device at a time, to my music program. So what I consider my really important contribution, that still is important, came in music three. And this was what I call a block diagram compiler. And so I would make a block, which was this waveform oscillator. And it would have two inputs. One was the amplitude of the output. And the other was the frequency of the output. And it would have one output. And I would make a mixer block, which could add two things together and mix them. And I made a multiplier block in case you wanted to do simple ring modulation. And I made a noise generator. And essentially, I made a toolkit of these blocks that I gave to the musician, the composer. And he could interconnect them in any way he wanted to make as complex a sound as he wanted. And this was also a note-based system so that you would tell the computer to play a note.  +Well, Music 1 had only one voice and only one wave shape, a triangular wave, an equal slope up and equal slope down. And the reason was that the fastest computer at the time, the [[IBM 704]], was still very slow. And the only thing it could do a tall fast was addition. And if you think about it, each sample could be computed from the last sample by simply adding a number to it. So the time was one addition per sample. Well, the only thing the composer had at his disposal was the steepness of the slope, how big the number was. So that would determine how loud the waveform was, and the pitch that you were going to make, and the duration of the note. And so that wasn't very much, and you didn't have any polyphony there. So they asked for making a program that could have more voices. And I made one with four voices. And I made one where you could have a controlled wave shape so that you could get different timbers as much as the wave shape contributes to the timbre. Now, in a computer, calculating a sine wave, or a damp sine wave, or a complicated wave is pretty slow, especially in those days. So I invented the wavetable oscillator where you would calculate one pitch period of the wave and store it in the computer memory, and then read this out at various pitches so that this then could be done basically by looking up one location in the computer memory, which is fast. And I also put a amplitude control on the thing by multiplying the wave shape by number. So this cost a multiplication and a couple of additions. So it was more expensive. By that time, computers had gotten maybe 10 or 100 times as fast as the first computer. So it really was practical. So that was music too. And some thing that most listeners would call music came out of that. And some professional composers used it. But they always wanted more. In particular, they didn't have any things like a controlled attack and decay, or vibrato, or filtering, or noise, for that matter. So it was a perfectly reasonable request. But I was unwilling to contemplate even adding these kind of code, one device at a time, to my music program. So what I consider my really important contribution, that still is important, came in MUSIC 3. And this was what I call a block diagram compiler. And so I would make a block, which was this waveform oscillator. And it would have two inputs. One was the amplitude of the output. And the other was the frequency of the output. And it would have one output. And I would make a mixer block, which could add two things together and mix them. And I made a multiplier block in case you wanted to do simple ring modulation. And I made a noise generator. And essentially, I made a toolkit of these blocks that I gave to the musician, the composer. And he could interconnect them in any way he wanted to make as complex a sound as he wanted. And this was also a note-based system so that you would tell the computer to play a note.  Max V. Mathews 17:50 diff --git a/content/private b/content/private index ed1d6a35..70c8d313 160000 --- a/content/private +++ b/content/private @@ -1 +1 @@ -Subproject commit ed1d6a356307ca47acd0c2263daebce33bb58cf9 +Subproject commit 70c8d3130245a4852f0b67f6805f5ca61869b39c