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ABSTRACT

This paper proposes λmmm: a call-by-value simply-typed lambda
calculus-based intermediate representation of a programming lan-
guage for music that deal with synchronous signal processing, as
well as a virtual machine and instruction set to run λmmm. Dig-
ital signal processing can be represented with a syntax that incor-
porates the internal states of delay and feedback into the lambda
calculus. λmmm is a superset of the lambda calculus, which al-
lows users to construct a generative signal processing graph and
its execution in identical semantics. On the other hand, due to its
specification, a problem was found that when dealing with higher-
order functions, the users have to determine whether the execution
is in the global environment evaluation or the DSP execution, and
it is implied that the multi-stage computation can solve the issue.

1. INTRODUCTION

Many programming languages for sound and music have been
developed, but only a few have strongly formalized semantics.
One language that is both rigorously formalized and practical is
Faust[1], which combines blocks with inputs and outputs with five
primitive operations - parallel, sequential, split, merge, and recur-
sive connection. By having basic arithmetics, conditional and de-
lay as primitive blocks, any type of signal processing can be writ-
ten in Faust. In a later extension, a macro based on a term rewriting
system has been introduced, allowing users to parameterize blocks
with an arbitrary number of inputs and outputs[2].

This strong abstraction capability through formalization en-
ables Faust to be translated to various backends, such as C, C++,
Rust and LLVM IR. On the other hand, BDA lacks theoretical and
practical compatibility with common programming languages. Al-
though it is possible to call external C functions in Faust, those
functions are assumed to be pure functions without a heap memory
allocation and deallocation. Therefore, while it is easy to embed
Faust in another language, it is not easy to call another language
from Faust.

In addition, a macro for Faust is an independent term rewriting
system that generates BDA based on a pattern matching. There-
fore, the arguments for pattern matching are implicitly required to
be an integer, which sometimes causes compile errors despite the
distinction between real and integer types does not exist in BDA.
These implicit typing rules are not intuitive for novice users.

Proposing a computational model for signal processing based
on the more generic computational models, such as a lambda cal-
culus has the potential to interoperate between many different gen-
eral purpose languages on run-time, and also facilitate the appro-
priation of existing optimization methods and the implementation
of compilers and run-time.

Currently, it has been proved that BDA can be converted to a
general-purpose functional language in the form of using arrow,
a higher-level abstraction of monads[3]. However, higher-order
functions on general-purpose functional languages are often im-
plemented on the basis of dynamic memory allocation and release,
which makes it difficult to use them in host languages for real-time
signal processing.

Also, Kronos[4] and W-calculus[5] are examples of attempts
at lambda calculus-based abstraction while being influenced by
Faust. Kronos is based on the theoretical foundation of System-
Fω, a variation of lambda calculus in which the type itself can be
abstractized (a function that takes the type as an input and returns
a new type can be defined). In Kronos, a calculation of type cor-
responds to the signal graph generation and a calculation of value
corresponds to the actual processing. A special primitive oper-
ation is only delay in Kronos, and the feedback routing can be
represented as a recursive function application in a calculation of
types.

The W-calculus has feedback operation as a primitive, along
with the access to the value of the variable in the past(= delay).
W-calculus limits the systems so that can represents to linear-time-
invariant such as filters and reverbrators and defines a more formal
semantics, aiming at automatic proofs of the linearity and identity
of graph topologies.

Previously, the author designed a programming language for
music mimium [6]. By adding basic operations of delay and feed-
back to lambda calculus, signal processing can be concisely ex-
pressed while having a syntax close to that of general-purpose
programming languages (especially, the syntax of mimium is de-
signed to be looks like Rust language).

One of the previous issues with mimium was the inability to
compile the codes, which contain a combination of recursive or
higher-order functions with stateful functions that contains delay
or feedback because the compiler could not determine the data size
of the internal state of the signal processing.

In this paper, I propose a syntax and semantics of λmmm, an
extended call-by-value simply-typed lambda calculus, as a compu-
tation model that is supposed to be an intermediate representation
for mimium. Also, I propose a virtual machine and its instruction
set based on Lua’s VM, to execute this computation model prac-
tically. Lastly, I discuss the problem and the potential, one that
the current λmmm that users have to care whether the calculation
happens in a global context or an acutal signal processing, another
that the run-time interoperation between the other programming
languages can be easier than the existing DSP languages.

2. SYNTAX

Definition of types and terms of the λmmm are shown in Figure 1.

1

https://matsuuratomoya.com
mailto:me@matsuuratomoya.com


Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

τp ::= R [real]

| N [nat]

τ ::= τp

| τ → τ [function]

Types

vp ::= r r ∈ R
| n n ∈ N

v ::= vp

| cls(λ x.e, E)

Values

e ::= x x ∈ vp [value]

| λx.e [lambda]

| let x = e1 in e2 [let]

| fix x.e [fixpoint]

| e1 e2 [app]

| if (ec) et else ee [if ]

| delay n e1 e2 n ∈ N [delay]

| feed x.e [feed]

|...

Terms

Figure 1: Definition of Types, Values and Terms of the
λmmm(Basic arithmetics are omitted).

fn onepole(x,g){
x*(1.0-g) + self*g

}

Listing 1: Example of the code of one-pole filter in mimium.

Two terms are added in addition to the usual simply-typed
lambda calculus, delay n e1 e2 that refers a previous value of e1 to
e2 sample before (with maximum delay value n to limit memory
size to finite), and feed x.e abstraction that the user can refer the
result of the evaluation of the e one unit time before as x during
the evaluation of e itself.

2.1. Syntactic sugar of the feedback expression in mimium

mimium by the author has a keyword self that can be used in
function definition, that refers to the previous return value of the
function. The example code of the simple one-pole filter function
that mixes input and last output signal so as to a sum of gains of
input and feedback should be 1, is shown in Listing 1. This code
can be expressed in λmmm as Figure 2.

let onepole =

λx.λg. feed y. x ∗ (1.0− g) + y ∗ g in ...

Figure 2: Equivalent expression to Listing 1 in λmmm.

2.2. Typing Rule

Additional typing rules to usual simply-typed lambda calculus are
shown in Figure 3.

Γ, x : τa ⊢ e : τb
Γ ⊢ λx.e : τa → τb

T-LAMBDA

Γ ⊢ e1 : N Γ ⊢ e2 : τ

Γ ⊢ delay e1 e2 : τ

T-DELAY

Γ, x : τp ⊢ e : τp
Γ ⊢ feed x.e : τp

T-FEED

Γ ⊢ ec : R Γ ⊢ et : τ Γ ⊢ ee : τ

Γ ⊢ if (ec) et ee : τ

T-IF

Figure 3: Excerpt of the typing rules for λmmm.

As primitive types, there are a real number type to used in most
of signal processing and a natural number type that is used for the
indice of delay.

In the W-calculus, which is a direct inspiration to designing
λmmm, function types can takes only tuples of real numbers and
return tuples of real numbers. This means that higher-order func-
tions cannot be written. While this restriction is reasonable as a
design choice for a language for signal processing since higher-
order functions require data structures that require dynamic mem-
ory allocation, such as closures, for their implementation, it also
lacks the generality of the lambda calculus.

In λmmm, the problem of memory allocation for closures is
left to the implementation of the runtime in the Section4, and
higher-order functions are allowed. However, the feed abstrac-
tion does not allow function types as its input and output. Allow-
ing the return of function types in the feed abstraction means that
it is possible to define functions whose processing contents may
change time-to-time. While this may be interesting theoritically,
there are currently no practical cases in real-world signal process-
ing, and it is expected to further complicate implementations.

3. SEMANTICS

The excerpt of operational semantics of the λmmm is shown in
Figure 4. This big-step semantics is a conceptual explanation of
the evaluation that, when the current time is n, the previous eval-
uation environment t samples before can be referred to as En−t ,
and that when the time < 0, the evaluation of any term is evaluated
to the default value of its type (0 for the numeric types).

Of course, if we tried to execute this semantics in a straight-
forward manner, we would have to redo the calculation from time
0 to the current time every sample, with saving all the variable
environments at each sample. In practice, therefore, a virtual ma-
chine is defined that takes into account the internal memory space
used by delay and feed, and the λmmm terms are converted into
instructions for that machine before execution.

4. VM MODEL AND INSTRUCTION SET

A model for the virtual machine and its instruction set to run
λmmm is based on the VM for Lua version 5[7].

When executing a computational model based on lambda cal-
culus, the problem is how to handle a data structure called a closure
that captures the variable environment where the inner function is
defined, to refer the outer variables from the inner function context.
If the dictionary data of names and values of variables are paired
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En ⊢ e2 ⇓ vd n > vd En−vd ⊢ e1 ⇓ v

En ⊢ delay n e1 e2 ⇓ v

E-DELAY

En ⊢ λx.e ⇓ cls(λx.e, En)

E-LAM

En−1 ⊢ e ⇓ vf En, x 7→ vf ⊢ e ⇓ v

En ⊢ feed x.e ⇓ v

E-FEED

En ⊢ ec ⇓ n n > 0 En ⊢ et ⇓ v

En ⊢ if(ec) et else ee ⇓ v

E-IFTRUE

En ⊢ ec ⇓ n n ≦ 0 En ⊢ ee ⇓ v

En ⊢ if(ec) et else ee ⇓ v

E-IFFALSE

En ⊢ e1 ⇓ cls(λxc.ec, E
n
c )E

n ⊢ e2 ⇓ v2 En
c , xc 7→ v2 ⊢ ec ⇓ v

En ⊢ e1 e2 ⇓ v

E-APP

Figure 4: Excerpt of the big-step semantics of λmmm.

with inner function, implementation of the compiler (intepreter) is
simple, but run-time performance is limited.

On the contrary, a runtime performance can be improved by
performing a process called closure transformation (or lambda lift-
ing), which analyses all the names of outer variables referred by
the inner function and transforms the inner function by adding ar-
gument so that the variables can be referred explicitly, but the com-
piler implementation of the transformation is relatively complex.

The Lua VM takes an intermediate approach between these
two by adding the VM instructions GETUPVALUE /
SETUPVALUE, which allows the outer variables to be referred dy-
namically at runtime. The implementation of compiler and VM
using upvalue is simpler than closure conversion, while at the same
time preventing execution performance degradation, as outer vari-
ables can be referred via the call stack rather than on the heap
memory unless the closure object escapes from the context of the
original function[8].

Also, upvalue helps interoperations between other program-
ming languages, as Lua can be easily embedded through C lan-
guage API and when implementing external libraries in C, pro-
grammer can access to upvalues of Lua Runtime not only the stack
values in C API.

4.1. Instruction Set

VM Instructions for λmmm differs from the Lua VM in the fol-
lowing respects.

1. Since mimium is a statically typed language unlike Lua,
instructions for basic arithmetics are provided for each type.

2. The call operation is separated into the normal function call
and the call of closure due to its static typing similarly, and
also to handle higher-order statefull functions(See 4.2 for
details).

3. If statements are realised by a combination of two instruc-
tions, JMP and JMPIFNEG, whereas the Lua VM uses a
dedicated TEST instructions.

4. Instructions related to for loop, the SELF instruction used
for object-oriented programming and the TABLE-related in-
structions for metadata references to variables are omitted
in mimium as they are not used.

5. Instructions related to list-related data structures are also
omitted in this paper, as the implementation of data struc-
tures such as tuples and arrays was omitted in the descrip-
tion of the λmmm in this paper.

Instructions in λmmm VM are 32bit data with operation tag
and 3 operands. Currently, a bit width for the tag and each operands
are all 8 bit1.

The VM of λmmm is a register machine like the Lua VM (after
version 5), although the VM has no real register but the register
number simply means the offset index of the call stack from the
base pointer at the point of execution of the VM. The first operand
of most instructions is the register number in which to store the
result of the operation.

The list of instructions is shown in Figure 5 (basic arithmetic
operations are partly omitted). The notation for the instruction
follows the Lua VM paper [7, p.13]. From left to right, the name
of operation, a list of operands, and pseudo-code of the operation.
When using each of the three operands as unsigned 8 bits, they are
denoted as A B C. When used with a signed integer, prefix s is
added, and when the two operand fields are used as one 16 bits,
an suffix x is added. For example, when B and C are merged and
treated as signed 16 bits, they are denoted as sBx.

In pseudo-code describing an functionality, R(A) means that
data is moved in and out through the register (call stack) at the
point of base pointer for current function + A. K(A) means that it
retrieves the A-th number in the static variable field of the compiled
program. U(A) means that referring A-th upvalue of the current
function.

In addition to Lua’s Upvalue operation, 4 operations related to
internal state variables over time, GETSTATE, SETSTATE,
SHIFTSTATE and DELAY are added to compile delay and feed
expressions.

4.2. Overview of the VM structure

The overview of a data structure of the virtual machine, the pro-
gram and the instantiated closure for λmmm is shown in Figure 6.
In addition to the normal call stack, the VM has a storage area for
managing internal state data for feedback and delay.

1Reason for this is that it is easy to implemented on enum data structure
on Rust, a host language of the latest mimium compiler. Operands bitwidth
and alignment may be changed in the future.
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MOVE A B R(A) := R(B)
MOVECONST A B R(A) := K(B)
GETUPVALUE A B R(A) := U(B)
(SETUPVALUE does not exist)
GETSTATE* A R(A) := SPtr[SPos]
SETSTATE* A SPtr[SPos] := R(A)
SHIFTSTATE* sAx SPos += sAx
DELAY* A B C R(A) := update_ringbuffer(SPtr[SPos],R(B),R(C))

*((SPos,SPtr)= vm.closures[vm.statepos_stack.top()].state
if vm.statepos_stack is empty, use global state storage.)

JMP sAx PC +=sAx
JMPIFNEG A sBx if (R(A)<0) then PC += sBx
CALL A B C R(A),...,R(A+C-2) := program.functions[R(A)](R(A+1),...,R(A+B-1))
CALLCLS A B C vm.statepos_stack.push(R(A))

R(A),...,R(A+C-2) := vm.closures[R(A)].fnproto(R(A+1),...,R(A+B-1))
vm.statepos_stack.pop()

CLOSURE A Bx vm.closures.push(closure(program.functions[R(Bx)]))
R(A) := vm.closures.length - 1

CLOSE A close stack variables up to R(A)
RETURN A B return R(A), R(A+1)...,R(A+B-2)
ADDF A B C R(A) := R(B) as float + R(C) as float
SUBF A B C R(A) := R(B) as float - R(C) as float
MULF A B C R(A) := R(B) as float * R(C) as float
DIVF A B C R(A) := R(B) as float / R(C) as float
ADDI A B C R(A) := R(B) as int + R(C) as int

...Other basic arithmetics continues for each primitive types...

Figure 5: Instruction sets for VM to run λmmm.

This storage area is accompanied by data indicating the posi-
tion from which the internal state is retrieved by the GETSTATE /
SETSTATE instructions. This position is modified by
SHIFTSTATE operation back and forth. The actual data in the
state storage memory are statically layed out at compile time by
analyzing function calls that include references to self, call of
delay and the functions which will call such statefull functions
recursively. DELAY operation takes 2 inputs, B for an input and C
for the delay time in samples.

However, in the case of higher-order functions that receive a
function as an argument and return another function, the layout of
the internal state of the given function is unknown at the compila-
tion, so an internal state storage area is created for each instantiated
closure separately from the global storage area held by the VM in-
stance itself. The VM have an another stack to keep the pointer
to state storage. Each time CALLCLS used, VM pushes a pointer
to the state storage of instantiated closure to the state stack and, at
the end of the closure call, VM pops out the state pointer from the
stack.

Instantiated closures also hold the storage area of upvalues.
Until the closure exits the context of parent function (such a clo-
sure is called "Open Closure"), upvalues holds a negative offset on
the stack at the ongoing execution. This offset value can be deter-
mined at compile time, the offset is stored in the function proto-
type in the program. Also, not only local variables, upvalue may
refer to parent funtion’s upvalue (this situation can happens when
at least 3 functions are nested). So the array of upvalue indexes in
the function prototype holds a pair of tag whether it is local stack
value or further upvalue and its index (negative offset of stack or
parent function’s upvalue index).

For instance, if the Upvalue indexes in the program were like

[upvalue(1),local(3)], GETUPVALUE 6 1 means that,
take 3 from the upvalue indexes 1 and get value from R(-3) over
the base pointer and store it to R(6).

When the closure escapes from the original function with
RETURN instruction, inserted CLOSE instruction
the RETURN instruction moves actual upvalues from the stack into
somewhere on the heap memory. This upvalues may be referred
from multiple locations when using nested closures, and some
form of garbage collection needed to free memory after they are
no longer referred.

In the current specification, the paradigm is call-by-value and
reassignment expression does not exist, therefore, SETUPVALUE
instruction does not exist in λmmm VM. This difference also make
a difference to the implemention of open upvalue in the closure
because the open upvalue should be shared memory cell which
maybe recursively converted into memory cell of closed value when
the CLOSE instruction is called.

4.3. Compilation to the VM instructions

Listing 2 shows an basic example when the mimium code in
Listing 1 is compiled into VM bytecode. When self is referred,
the value is obtained with the GETSTATE instruction, and the in-
ternal state is updated by storing the return value with the
SETSTATE instruction before returning the value with RETURN
from the function. Here, the actual return value is obtained by the
second GETSTATE instruction in order to return the initial value
of the internal state when time=0.

For example, when a time counter is written as | | {self
+ 1}, it is the compiler’s design choice whether the return value
of time=0 should be 0 or 1 though the latter does not strictly follow
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Virtual Machine

Program Counter

State_Ptr Stack

Audio Driver

Call Stack

...

State Storage

Closure Storage

Base Pointer

State Position

State for self
1
Ring Buffer for 

delay 1

State for self
2
Ring Buffer for 

delay 2

...

Program

Function Prototype0

Static Variables

...

...
Function Prototype1

OP A B C
OP A B C
OP A B C
OP A B C
OP A B C

Upvalue List

Program

State Size

 Local(N1)
 Upvalue(N2)

Open Closure

Function Prototype

State Storage

Upvalues
Open(Local(N1))

Open(Upvalue(N2))

State Position

Escaped Closure

Function Prototype

State Storage

Upvalues

State Position

Closed Upvalue 1

Closed Upvalue 2

Somewhere on the Heap Memory 
(Maybe Shared with other closures)


Figure 6: Overview of the virtual machine, program and instantiated closures for λmmm.

CONSTANTS:[1.0]
fn onepole(x,g) state_size:1
MOVECONST 2 0 // load 1.0
MOVE 3 1 // load g
SUBF 2 2 3 // 1.0 - g
MOVE 3 0 // load x
MULF 2 2 3 // x * (1.0-g)
GETSTATE 3 // load self
MOVE 4 1 // load g
MULF 3 3 4 // self * g
ADDF 2 2 3 // compute result
GETSTATE 3 // prepare return value
SETSTATE 2 // store to self
RETURN 3 1

Listing 2: Compiled VM instructions of one-pole filter example in
Listing 1

the semantics E-FEED in Figure 4. If the design is to return 1 when
time = 0, the second GETSTATE instruction can be removed and
the value for the RETURN instruction should be R(2).

A more complex example code and its expected bytecode in-
structions are shown in Listing 3 and Listing 4. The codes define
delay with a feedback as fbdelay, the other function twodelay
uses two feedback delay with different parameters, and dsp finally
uses two twodelay function.

Each after the referring to self through GETSTATE instruc-
tion, or call to the other statefull function,
SHIFTSTATE instruction inserted to move the position of state
storage forward to prepare the next non-closure function call. Be-
fore exiting function, the state position is reset to the same position
as that the current function context has begun by SHIFTSTATE
(A sum of the operand for SHIFTSTATE in a function must be al-
ways 0). Figure 7 shows how the state position moves by SHIFTSTATE
operations during the execution of twodelay function.

By describing an internal state as a relative position in the state
storage, the state data can be expressed as a flat array, which makes
the implementation of the compiler simple, not like a tree structure
that need to analyze a call tree from the root to generate as in the
previous implementation of mimium. This is similar to upvalue
makes the implementation of the compiler simpler by describing
free variables as relative positions on the call stack.

Listing 5 shows an example of a higher-order function
filterbank that takes another function filter that takes an
input and a frequency as an argument, duplicates n of filter, and
adds them together. Note that in the previous specification of mim-
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fn fbdelay(x,fb,dtime){
x + delay(1000,self,dtime)*fb

}
fn twodelay(x,dtime){

fbdelay(x,dtime,0.7)
+fbdelay(x,dtime*2,0.8)

}
fn dsp(x){

twodelay(x,400)+twodelay(x,800)
}

Listing 3: Example code that combines self and delay without
closure call.

Ring Buffer for 

delay 1

State for self
2
Ring Buffer for 

delay 2

State for self
1
1 2

3

4

5

Figure 7: Image of how the state position moves while executing
twodelay function in Listing 4.

ium in [6], the binding of new variable and destructive assignment
were the same syntax (x = a) but the syntax for the variable bind-
ing has changed to use let keyword. Also, because the semantics
is call-by-value paradigm, reassignment syntax never be used in
the current implementation.

The previous mimium compiler could not compile code that
takes a function containing such a state as an argument because
the tree of all internal states was statically determined at com-
pile time, but the VM in the λmmm can manage it dynamically.
Listing 6 shows translated VM instruction of the code. Recur-
sive calls of the first line of code in filterbank and the func-
tions given as arguments or obtained via upvalue like filter are
called with the CALLCLS instruction instead of the CALL instruc-
tion. The GETSTATE and SETSTATE instructions are not used in
this function because the internal state storage is switched when
the CALLCLS is interpreted.

5. DISCUSSION

As seen in the example of the filterbank, in λmmm, signal graph
can be parametrically generated in an evaluation of global context,
compared to that Faust uses a term-rewriting macro and Kronos
uses a type-level computation as in the Table 1.

CONSTANTS:[0.7,2,0.8,400,800,0,1]
fn fbdelay(x,fb,dtime) state_size:2
MOVE 3 0 //load x
GETSTATE 4 //load self
SHIFTSTATE 1 //shift Spos
DELAY 4 4 2 //delay(_,_,_)
MOVE 5 1 // load fb
MULF 4 4 5 //delayed val *fb
ADDF 3 3 4 // x+
SHIFTSTATE -1 //reset SPos
GETSTATE 4 //prepare result
SETSTATE 3 //store to self
RETURN 4 1 //return previous self

fn twodelay(x,dtime) state_size:4
MOVECONST 2 5 //load "fbdelay" prototype
MOVE 3 0
MOVE 4 1
MOVECONST 5 0 //load 0.7
CALL 2 3 1
SHIFTSTATE 2 //2=state_size of fbdelay
MOVECONST 3 5 //load "fbdelay" prototype
MOVE 4 0
MOVECONST 5 1 //load 2
MULF 4 4 5
MOVECONST 5 0 //load 0.7
CALL 3 3 1
ADDF 3 3 4
SHIFTSTATE -2
RETURN 3 1

fn dsp (x)
MOVECONST 1 6 //load "twodelay" prototype
MOVE 2 0
MOVECONST 3 3 //load 400
CALL 1 2 1
SHIFTSTATE 4 //4=state_size of twodelay
MOVECONST 2 6
MOVE 2 3 //load "twodelay" prototype
MOVE 3 0
MOVECONST 3 4 //load 400
CALL 2 2 1
ADD 1 1 2
SHIFTSTATE -4
RETURN 1 1

Listing 4: Compiled VM instructions of feedback delay example in
Listing 3
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fn filterbank(n,filter){
let next = filterbank(n-1,filter)
if (n>0){
|x,freq| filter(x,freq+n*100)
+ next(x,freq)

}else{
|x,freq| 0

}
}
let myfilter = filterbank(3,bandpass)
fn dsp(){
myfilter(x,1000)

}

Listing 5: Example code that duplicates filter parametrically using
a recursive function and closure.

The ability to describe both the generation of parametric signal
processing and its content in a single semantics will make it eas-
ier for novice users to understand the mechanism of the language.
Also, the single semantics may facilitate run-time interoperation
with other general-purpose languages.

On the other hand, there is the problem that the single se-
mantics causes λmmm to behave differently from the behavior ex-
pected in a normal lambda calculus.

Parametric Signal Graph Actual DSP
Faust Term Rewriting Macro BDA

Kronos Type-level Computation Value Evaluation

λmmm
Evaluation in
Global Context

Evaluation of
dsp Function

Table 1: Comparison of the way of signal graph generation and
actual signal processing between Faust, Kronos and λmmm.

5.1. Different behaviour depending on the location of let bind-
ing

By having functions that have internal states which change over
time in mimium, when higher-order functions are used, there is a
counterintuitive behavior compared to general functional program-
ming languages.

Listing 7 is an example of the incorrect code slightly modified
from the filterbank example in Listing 5. The difference between
Listing 5 and Listing 7 is that the recursive calls in the filterbank
function are written directly, or once bound with let expression
out of the inner function. Similarly, in the dsp function that will
be called by the audio driver in mimium, the difference is whether
the filterbank function is executed inside dsp or bound with let
once in the global context.

In the case of normal functional language, if all the functions
used in a composition do not contain destructive assignments, the
calculation process will not change even if the variable bound by
let were manually replaced with its term (beta reduction), as in
the conversion from Listing 5 to Listing 7.

But in mimium, there are two major stages of evaluation, 0:
the code is evaluated in the global environment (concretizing the
signal processing graph) at first, and 1: the dsp function is repeat-
edly executed (actual signal processing) and the function may in-

CONSTANTS[100,1,0,2]
fn inner_then(x,freq)
//upvalue:[local(4),local(3),local(2),local

(1)]
GETUPVALUE 3 2 //load filter
MOVE 4 0
MOVE 5 1
GETUPVALUE 6 1 //load n
ADDD 5 5 6
MOVECONST 6 0
MULF 5 5 6
CALLCLS 3 2 1 //call filter
GETUPVALUE 4 4 //load next
MOVE 5 0
MOVE 6 1
CALLCLS 4 2 1 //call next
ADDF 3 3 4
RETURN 3 1

fn inner_else(x,freq)
MOVECONST 2 2
RETURN 2 1

fn filterbank(n,filter)
MOVECONST 2 1 //load itself
MOVE 3 0 //load n
MOVECONST 4 1 //load 1
SUBF 3 3 4
MOVECONST 4 2 //load inner_then
CALLCLS 2 2 1 //recursive call
MOVE 3 0
MOVECONST 4 2 //load 0
SUBF 3 3 4
JMPIFNEG 3 2
MOVECONST 3 2 //load inner_then
CLOSURE 3 3 //load inner_lambda
JMP 2
MOVECONST 3 3 //load inner_else
CLOSURE 3 3
CLOSE 2
RETURN 3 1

Listing 6: Compiled VM instructions filterbank example in Listing
5
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fn bandpass(x,freq){
//...

}
fn filterbank(n,filter){
if (n>0){
|x,freq| filter(x,freq+n*100)
+ filterbank(n-1,filter)(x,freq)

}else{
|x,freq| 0

}
}
fn dsp(){ //called by audio driver.
filterbank(3,bandpass)

}

Listing 7: Wrong example of the code that duplicate filter
parametrically.

fn filterbank(n,filter){
.< if (n>0){
|x,freq| filter(x,freq+n*100)

+ ~filterbank(n-1,filter)(x,freq)
}else{
|x,freq| 0

} >.
}
fn dsp(){
~filterbank(3,bandpass) (x,1000)

}

Listing 8: Example of filterbank function using multi-stage
computation in a future specification of mimium.

volve implicit internal state updates. Therefore, even though the
code does not include destructive assignments, the recursive ex-
ecution of the filterbank function is performed only once in
Listing 5 for the evaluation of the global environment, whereas in
Listing 7, every sample the dsp function is executed, the recursive
function is executed and a closure is generated. Since the initial-
ization of the internal state in the closure is performed at the time
of closure allocation, in the example of Listing7, the internal state
of the closure after the evaluation of filterbank is reset at each
time step.

This means that the major compiler optimization techniques
such as the constant folding and the function inlining can not sim-
ply be appropriated for mimium. Those optimizations should be
done after the evaluation of a global context and before evaluating
dsp function.

To solve this situation, introducing distinction whether the term
should be used in global context evaluation (stage 0) and in the
actual signal processing (stage 1) in type system. This can be
realized with Multi-Stage Computation[9]. Listing 8 is the ex-
ample of filterbank code using BER MetaOCaml’s syntaxes
.<term>. which will generate evaluated program to be used in
a next stage, and ~term which embed terms evaluated at the pre-
vious stage[10].

filterbank function is evaluated in stage 0 while embed-

ding itself by using ~. This multi-stage computation code still
has a same semantics in a generative signal graph generation and
execution of the signal processing, in contrast to that Faust and
Kronos.

5.2. A possibility of the foreign statefull function call

The data structure of closure in λmmm is a combination of func-
tions and internal states, as shown in Figure 3. The fact that
filterbank samples do not require any special handling of in-
ternal states also means that external signal processor (Unit Gener-
ator: UGen) such as oscillators and filters written in C or C++, for
example, can be called from mimium in the same way as normal
closure calls, and it is even possible to parametrically duplicate
and combine external UGens. This is an advantage that is diffi-
cult to implement in Faust and other similar languages, but easy to
implement on λmmm paradigm.

However currently, mimium is based on sample-by-sample
processing and cannot handle buffer-by-buffer value passing. Since
most native unit generators perform processing on a buffer-by-
buffer basis, there are not many cases where external UGens are
utilized in practice for now. However, in the λmmm, only feed
terms need to be processed sample-by-sample, so it is possible to
distinguish functions that can only process one sample at a time
from functions that can process concurrently at the type level. As
the Multi-rate specification is being considered in Faust[11], it
may be possible to read/write buffer between an external Unit Gen-
erator by having the compiler automatically determine the parts
that can be processed as buffer-by-buffer.

6. CONCLUSION

This paper proposed λmmm, an intermediate representation for the
programming languages for music and signal processing with the
virtual machine and instruction set to run it. λmmm enables to
describe generative signal graph and its contents in a single syn-
tax and semantics. However, user have to be responsible to write
codes that does not create escapable closures during the iterative
execution of DSP, which will be difficult to understand for novice
users.

In this paper, the translation from λmmm terms from VM in-
structions is explained by just showing examples of the code and
its expected result of instructions as well as the semantics of VM
is presented with pseudo-code of the behaviour. More formal se-
mantics and translation process should be considered along with
an introduction of the multi-stage computation.

I hope that this research will lead to more general representa-
tions of music and sound on the digital computer and more connec-
tions between the theory of languages for music and more general
programming language theory.
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