Defining Programming languages for Music through the view of ‘“Somewhat
Weak” Computer Music

Anonymized for review

example@example.com

ABSTRACT

In this paper, the author introduces the perspective of “Some-

what Weak Computer Music” in order to describe the his-
tory of programming languages for music without being
bound by the style of computer music, and conduct a crit-
ical review of the history programming languages for mu-
sic. This paper focuses on a critical review of the post-
acousmatic discourse, which is an inclusive notion for re-
cent tendencies in computer music. The universalism as-
sociated with pulse-code modulation, which is the basis of
sound programming today, has functioned as a discourse
that invites expectations of musicians and scientists, even
though in reality the range of expression is limited to that
era. In addition, the MUSIC-N family, which is the ori-
gin of sound generation with a computer based on PCM,
is contextualized more as a series of workflows for gen-
erating sound on a computer rather than as a semantics
and specification of programming languages, and it has
gradually developed as a black box that users do not need
to understand its internal structure. The author concludes
that programming languages for music developed since the
1990s are not necessarily aimed at creating new musical
styles, but also have the aspect of presenting an alterna-
tive to the technological infrastructure around music, such
as formats and protocols which is becoming more invisi-
ble, and a new point of discussion is presented for future
historical research on music using computers.

1. INTRODUCTION

Programming languages and environments for music have
developed hand in hand with the history of creating music
using computers. Software like Max, Pure Data, CSound,
and SuperCollider has been referred to as “Computer Mu-
sic Language” [1, 2, 3], “Language for Computer Music”

[4], and “Computer Music Programming Systems” [5], though

there is no clear consensus on the use of these terms. How-
ever, as the term “Computer Music” suggests, these pro-
gramming languages are deeply intertwined with the his-
tory of technology-driven music, which developed under
the premise that “almost any sound can be produced” [6]
through the use of computers.

Copyright: ©2025 Anonymized for review et al. This is an open-access

article distributed under the terms of the Creative Commons Attribution

License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

In the early days, when computers were confined to uni-
versity research laboratories and neither displays nor mice
existed, creating sound or music with computers was in-
evitably linked to programming. Today, however, using
programming as a means to produce sound on a computer—
rather than employing DAW (Digital Audio Workstation)
software—is somewhat specialized. In other words, pro-
gramming languages for music developed after the pro-
liferation of personal computers are software that deliber-
ately choose programming (whether textual or graphical)
as their frontend for sound generation.

Since the 1990s, theoretical advancements in program-
ming languages and the various constraints required for
real-time audio processing have significantly increased the
specialized knowledge needed to develop programming lan-
guages for music. Furthermore, some music-related lan-
guages developed after the 2000s are not necessarily aimed
at pursuing new forms of musical expression. There ap-
pears to be no unified perspective on how to evaluate such
languages.

The ultimate goal of this paper is to introduce the frame-
work of “weak computer music,” referring to music me-
diated by computers in a non-style-specific manner. This
framework aims to decouple the evaluation of program-
ming language design and development for music from
specific styles and the ideologies associated with computer
music.

1.1 Use of the Term “Computer Music”

Despite its potential broad application, the term “computer
music” has been repeatedly noted since the 1990s as being
used within a narrowly defined framework, tied to specific
styles or communities [7].

The necessity of using the term ‘“computer music” for
such academic contexts (particularly those centered around
the International Computer Music Conference, or ICMC)
has diminished over time. Lyon argues that defining com-
puter music as simply “music made using computers” is
too permissive, while defining it as “music that could not
exist without computers” is overly strict, complicating the
evaluation of analog modeling synthesizers implemented
on computers. Lyon questions the utility of the term it-
self, comparing its consideration to that of “piano music,”
which ignores the styles within it [8].

As Ostertag and Lyon observed, it has become increas-
ingly difficult to envision a situation where computers are
absent from the production and experience of music to-
day, particularly in commercial contexts ! . Nevertheless,

! Of course, the realm of music extends beyond the numbers processed


mailto:example@example.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

the majority of music in the world could be described as
“simply using computers.”

Holbrook and Rudi propose analyzing what has been called
computer music within the framework of post-acousmatic
music [9], including traditions of pre-computer electronic
music as one of many forms of technology-based/driven
music [10].

A critical issue with these discussions is that post-acousmatic

music lacks a precise definition. One proposed character-
istic is the shift in the locus of production from institutions
to individuals, which has altered how technology is used
[9, p113]. However, this narrative incorporates a tautolog-
ical issue: while it acknowledges the historical fact that the
decreasing cost of computers allowed diverse musical ex-
pressions outside laboratories, it excludes much music as
“simply using computers” and fails to provide insights into
such divisions.

The spread of personal computers has incompletely achieved

the vision of metamedium as a device users could modify
themselves, instead becoming a black box for content con-
sumption [11]. Histories highlighting the agency of those
who created programming environments, software, proto-
cols, and formats for music obscure indirect power rela-
tionships generated by the infrastructure [12].

Today, while music production fundamentally depends
on computers, most of it falls under Lyon’s overlapping
permissive and strict definitions of computer music. In this
paper, I propose calling this situation the following:

“Weak computer music” — music for which
computers are essential to its realization, but
where the uniqueness of the work as intended
by the creator is not particularly tied to the use
of computers.

Most people use computers simply because no quicker al-
ternative exists, not because they are deliberately leverag-
ing the unique medium of computers for music production.
However, the possibility that such music culture, shaped by
the incidental use of computers, has aesthetic and social
characteristics worth analyzing cannot be dismissed.

This paper will historically organize the specifications
and construction of programming languages for early com-
puter music systems with a focus on their style-agnostic
nature.

» Examining the discourse framing MUSIC as the pro-
genitor of computer music.

* Investigating what aspects were excluded from user
access in MUSIC-N derivatives such as MUSIGOL.

* Analyzing the standardization of UGens (unit gen-
erators) and the division of labor in Max and Pure
Data.

* Reviewing music programming languages of the 2000s.

The conclusion will propose a framework necessary for
future discussions on music programming languages.

by computers or the oscillations of speaker diaphragms. This paper does
not seek to intervene in aesthetic judgments regarding music made with-
out computers or non-commercial musical activities. However, the ex-
istence of such music does not counter the awareness that there is little
analysis of the inevitable involvement of computing as a medium in the
field of popular music, which attracts significant academic and societal
interest.

2. BORN OF “COMPUTER MUSIC” - MUSIC-N
AND PCM UNIVERSALITY

Among the earliest examples of computer music research,
the MUSIC I system (1957) from Bell Labs and its deriva-
tives, known as MUSIC-N, are frequently highlighted. How-
ever, attempts to create music with computers in the UK
and Australia prior to MUSIC I have also been documented
[13].

Organizing what was achieved by MUSIC-N and earlier
efforts can help clarify definitions of computer music.

The earliest experiments with sound generation on com-
puters in the 1950s involved controlling the intervals be-
tween one-bit pulses (on or off) to control pitch. This was
partly because the operational clock frequencies of early
computers fell within the audible range, making the soni-
fication of electrical signals a practical and cost-effective
debugging method compared to visualizing them on dis-
plays or oscilloscopes. Computers like Australia’s CSIR
Mark I even featured primitive instructions like a “hoot”
command to emit a single pulse to a speaker.

In the UK, Louis Wilson discovered that an AM radio
near the BINAC computer picked up electromagnetic waves
generated by vacuum tube switching, producing regular
tones. This serendipitous discovery led to the intentional
programming of pulse intervals to generate melodies [14].

However, not all sound generation prior to PCM (Pulse
Code Modulation) was merely the reproduction of existing
music. Doornbusch highlights experiments on the British
Pilot ACE (Prototype for Automatic Computing Engine:
ACE), which utilized acoustic delay line memory to pro-
duce unique sounds [13, p303-304]. Acoustic delay line
memory, used as main memory in early computers like
BINAC and CSIR Mark I, employed the feedback of pulses
traveling through mercury via a speaker and microphone
setup to retain data. Donald Davis, an engineer on the ACE
project, described the sounds it produced as follows [15,
p19-20]:

The Ace Pilot Model and its successor, the
Ace proper, were both capable of composing
their own music and playing it on a little speaker
built into the control desk. I say composing
because no human had any intentional part in
choosing the notes. The music was very in-
teresting, though atonal, and began by play-
ing rising arpeggios: these gradually became
more complex and faster, like a developing
fugue. They dissolved into colored noise as
the complexity went beyond human understand-
ing.

Loops were always multiples of 32 microsec-
onds long, so notes had frequencies which were
submultiples of 31.25 KHz. The music was
based on a very strange scale, which was noth-
ing like equal tempered or harmonic, but was
quite pleasant. This music arose unintention-
ally during program optimization and was made
possible by “misusing” switches installed for
debugging acoustic delay line memory (p20).

Media scholar Miyazaki described the practice of listen-
ing to sounds generated by algorithms and their bit pat-



terns, integrated into programming and debugging, as “Algorhythamid holistic—a narrative that obscures the constructed na-

Listening” [16].

Doornbusch warns against ignoring early computer mu-
sic practices in Australia and the UK simply because they
did not directly influence subsequent research [13, p305].
Indeed, the tendency to treat pre-MUSIC attempts as hob-
byist efforts by engineers and post-MUSIC endeavors as
serious research remains common even today [17].

The sounds generated by Pilot ACE challenge the post-
acousmatic narrative that computer music transitioned from
laboratory-based professional practices to personal use by
amateurs. This is because: 1. The sounds were produced
not by music specialists but by engineers, and 2. The sounds
were tied to hardware-specific characteristics of acoustic
delay line memory, making them difficult to replicate even
with modern audio programming environments. Similarly,
at MIT in the 1960s, Peter Samson utilized a debug speaker
attached to the aging TX-0 computer to experiment with
generating melodies using square waves [18].

This effort evolved into a program that allowed users to
describe melodies with text strings. For instance, writ-
ing 4fs t8 would produce an F4 note as an eighth note.
Samson later adapted this work to the PDP-1 computer,
creating the “Harmony Compiler,” widely used by MIT
students. He also developed the Samson Box in the early
1970s, a computer music system used at Stanford Uni-
versity’s CCRMA for over a decade [19]. These exam-
ples suggest that the initial purpose of debugging does not
warrant segregating early computational sound generation
from the broader history of computer music.

2.1 Universality of PCM

Let us examine Pulse Code Modulation (PCM)—a foun-
dational aspect of MUSIC’s legacy and one of the key rea-
sons it is considered a milestone in the history of com-
puter music. PCM enables the theoretical representation
of “almost any sound” on a computer by dividing audio
waveforms into discrete intervals (sampling) and express-
ing the amplitude of each interval as quantized numerical
values. It remains the fundamental representation of sound
on modern computers. The underlying sampling theorem
was introduced by Nyquist in 1928 [20], and PCM itself
was developed by Reeves in 1938.

A critical issue with the “post-acousmatic” framework in
computer music history lies within the term “acousmatic”
itself. Initially proposed by Piegnot and later theorized by
Schaeffer, the term describes a mode of listening to tape
music, such as musique concrete, in which the listener does
not imagine a specific sound source. It has been widely
applied in theories of recorded sound, including Chion’s
analyses of sound design in visual media.

However, as sound studies scholar Jonathan Sterne has
pointed out, discourses surrounding acousmatic listening
often work to delineate pre-recording auditory experiences
as “natural” by contrast 2 . This implies that prior to the ad-
vent of recording technologies, listening was unmediated

2 Sterne later critiques the phenomenological basis of acousmatic lis-
tening, which presupposes an idealized, intact body as the listening sub-
ject. He proposes a methodology of political phenomenology centered on
impairment, challenging these normative assumptions [21]. Discussions
of universality in computer music should also address ableism, as seen in
the relationship between recording technologies and auditory disabilities.

ture of these assumptions.

For instance, the claim that sound reproduc-
tion has “alienated” the voice from the human
body implies that the voice and the body ex-
isted in some prior holistic, unalienated, and
self present relation.

They assume that, at some time prior to the
invention of sound reproduction technologies,

the body was whole, undamaged, and phenomeno-
logically coherent. [22, p20-21]

The claim that PCM-based sound synthesis can produce
“almost any sound” is underpinned by an ideology associ-
ated with recording technologies. This ideology assumes
that recorded sound contains an “original” source and that
listeners can distinguish distortions or noise from it. Sam-
pling theory builds on this premise by statistically model-
ing human auditory characteristics: it assumes that humans
cannot discern volume differences below certain thresh-
olds or perceive vibrations outside specific frequency ranges.
By limiting representation to this range, sampling theory
ensures that all audible sounds can be effectively encoded.

By the way, the actual implementation of PCM in MU-
SIC T only allowed for monophonic triangle waves with
controllable volume, pitch, and timing (MUSIC II later ex-
panded this to four oscillators) [23]. Would anyone today
describe such a system as capable of producing “infinite
variations” in sound synthesis?

Even when considering more contemporary applications,
processes like ring modulation (RM), amplitude modula-
tion (AM), or distortion often generate aliasing artifacts
unless proper oversampling is applied. These artifacts oc-
cur because PCM, while universally suitable for reproduc-
ing recorded sound, is not inherently versatile as a medium
for generating new sounds. As Puckette has argued, al-
ternative representations, such as collections of linear seg-
ments or physical modeling synthesis, present other possi-
bilities [24]. Therefore, PCM is not a completely universal
tool for creating sound.

Acknowledgments

At the end of the Conclusions, acknowledgments to peo-
ple, projects, funding agencies, etc. can be included af-
ter the second-level heading “Acknowledgments” (with no
numbering).

3. REFERENCES

[1] J. McCartney, “Rethinking the Computer Music Lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61-68, Dec. 2002.

[2] H. Nishino and R. Nakatsu, “Computer Music Lan-
guages and Systems: The Synergy Between Technol-
ogy and Creativity,” in Handbook of Digital Games
and Entertainment Technologies, 2016.

[3] A. McPherson and K. Tahlroglu, “Idiomatic Patterns
and Aesthetic Influence in Computer Music Lan-
guages,” Organised Sound, vol. 25, no. 1, pp. 53-63,
2020.



(4]

(5]

(6]

(7]

(8]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

R. B. Dannenberg, “Languages for Computer Music,”
Frontiers in Digital Humanities, vol. 5, Nov. 2018.

V. Lazzarini, “The Development of Computer Music
Programming Systems,” Journal of New Music Re-
search, vol. 42, no. 1, pp. 97-110, 2013.

M. V. Mathews, “An Acoustic Compiler for Music
and Psychological Stimuli,” The Bell System Technical
Journal, vol. 40, no. 3, pp. 677-694, May 1961.

B. Ostertag, “Why Computer Mu-
sic Sucks,” https://web.archive.org/web/
20160312125123/http://bobostertag.com/
writings-articles-computer-music-sucks.htm, 1998.

E. Lyon, “Do we still need computer Mu-
sic?” https://disis.music.vt.edu/eric/LyonPapers/
Do_We_Still_Need_Computer_Music.pdf, 2006.

M. Adkins, R. Scott, and P. A. Tremblay, “Post-
Acousmatic Practice: Re-evaluating Schaeffer’s Her-
itage,” Organised Sound, vol. 21, no. 2, pp. 106116,
Aug. 2016.

U. Holbrook and J. Rudi, “Computer Music and Post-
Acousmatic Practices: International Computer Music
Conference 2022,” in Proceedings of the International
Computer Music Conference, ICMC 2022, ser. Inter-
national Computer Music Conference, ICMC Proceed-
ings, G. Torre, Ed. San Francisco: International Com-
puter Music Association, Jul. 2022, pp. 140-144.

L. Emerson, Reading Writing Interfaces: From the
Digital to the Bookbound. Univ of Minnesota Press,
Nov. 2014.

J. Sterne, “There Is No Music Industry,” Media Indus-
tries Journal, vol. 1, no. 1, pp. 50-55, Jan. 2014.

P. Doornbusch, “Early Computer Music Experiments
in Australia and England,” Organised Sound, vol. 22,
no. 2, pp. 297-307, Aug. 2017.

R. D. Woltman, F. B. Woltman, L. D. Wilson, A. B.
Tonik, J. K. Swearingen, C. M. Shuler, J. E. Sberro,
J. E. Sammet, H. W. Matter, D. W. Marquardt, F. K.
Koons, M. W. Huff, F. E. Holberton, C. Hammer, D. B.
Dixon, E. L. Delves, G. Danehower, M. P. Chinitz,
L. S. Carter, J. Bartik, L. W. Armstrong, D. P. Arm-
strong, and A. E. Adams, “UNIVAC Conference.”
Charles Babbage Institute, Tech. Rep., 1990.

D. Davis, “Very Early Computer Music,” Resurrection
The Bulletin of the Computer Conservation Society,
vol. 10, pp. 19-20, 1994.

S. Miyazaki, “Algorhythmic Listening 1949-1962 Au-
ditory Practices of Early Mainframe Computing,” in
AISB/IACAP World Congress 2012: Symposium on the
History and Philosophy of Programming, Part of Alan
Turing Year 2012, 2012, p. 5.

H. Tanaka, All About Chiptune: New Music Born from
Games. Seibundo Shinkosha, 2017.

(18]

(19]

(20]

(21]

(22]

(23]

[24]

S. Levy, Hackers: Heroes of the Computer Revolution
- 25th Anniversary Edition, 1st ed. O’Reilly Media,
May 2010.

D. G. Loy, “Life and Times of the Samson Box,” Com-
puter Music Journal, vol. 37, no. 3, pp. 2648, 2013.

H. Nyquist, “Certain Topics in Telegraph Transmis-
sion Theory,” Transactions of the American Institute of
Electrical Engineers, vol. 47, no. 2, pp. 617-644, Apr.
1928.

J. Sterne, Diminished Faculties: A Political Phe-

nomenology of Impairment. ~ Durham: Duke Univ
Press, Jan. 2022.

——, The Audible Past: Cultural Origins of Sound Re-
production. Durham: Duke University Press, 2003.

M. Mathews and C. Roads, “Interview with Max Math-
ews,” Computer Music Journal, vol. 4, no. 4, pp. 15—
22, 1980.

M. Puckette, “The Sampling Theorem and Its Discon-
tents,” International Computer Music Conference, pp.
1-14, 2015.


https://web.archive.org/web/20160312125123/http://bobostertag.com/writings-articles-computer-music-sucks.htm
https://web.archive.org/web/20160312125123/http://bobostertag.com/writings-articles-computer-music-sucks.htm
https://web.archive.org/web/20160312125123/http://bobostertag.com/writings-articles-computer-music-sucks.htm
https://disis.music.vt.edu/eric/LyonPapers/Do_We_Still_Need_Computer_Music.pdf
https://disis.music.vt.edu/eric/LyonPapers/Do_We_Still_Need_Computer_Music.pdf

	 1. Introduction
	1.1 Use of the Term ``Computer Music''

	 2. Born of ``Computer Music'' - MUSIC-N and PCM Universality
	2.1 Universality of PCM

	 3. References

