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ABSTRACT

This paper critically reviews the history of programming
languages for music by referring discussions from sound
studies, aiming to describe this history decoupled from com-
puter music as a genre/community. The paper focuses on
the universalism around Pulse-Code Modulation (PCM)
and Unit Generator concept established by MUSIC-N fam-
ily, which actually made lineage of role between composer
and scientists which tends to turn composers into consumers.
The paper concludes that programming languages for mu-
sic developed after the 2000s function as a means of pre-
senting alternatives to the often-invisible technological in-
frastructures surrounding music, such as formats and pro-
tocols, rather than solely aiming to create novel musical
styles.

1. INTRODUCTION

Programming languages and environments for music such
as Max, Pure Data, CSound, and SuperCollider has been
referred to as “Computer Music Language” [1, 2, 3], “Lan-
guage for Computer Music” [4], and “Computer Music
Programming Systems” [5], though there is no clear con-
sensus on the use of these terms. However, as the shared
term “Computer Music” implies, these programming lan-
guages are deeply intertwined with the history of technology-
driven music, which developed under the premise that “al-
most any sound can be produced” [6] through the use of
computers.

In the early days, when computers existed only in re-
search laboratories and neither displays nor mice existed,
creating sound or music with computers was inevitably
equivalent to programming. Today, however, programming
as a means to produce sound on a computer—rather than
employing Digital Audio Workstation (DAW) software like
Pro Tools is not popular. In other words, programming lan-
guages for music developed after the proliferation of per-
sonal computers are the softwares that intentionally chose
programming (whether textual or graphical) as their fron-
tend for making sound.

Since the 1990s, the theoretical development of program-
ming languages and the various constraints required for
real-time audio processing have significantly increased the
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specialized knowledge necessary for developing program-
ming languages for music today. Furthermore, some lan-
guages developed after the 2000s are not necessarily aimed
at pursuing new forms of musical expression. It seems that
there is still no unified perspective on how the value of such
languages should be evaluated.

In this paper, a critical historical review is conducted by
drawing on discussions from sound studies alongside ex-
isting surveys, aiming to consider programming languages
for music independently from computer music as the spe-
cific genre.

1.1 Use of the Term “Computer Music”

The term “Computer Music,” despite its literal and po-
tentially broad meaning, has been noted for being used
within a narrowly defined framework tied to specific styles
or communities, as represented in Ostertag’s Why Com-
puter Music Sucks [7] since the 1990s.

As Lyon observed nearly two decades ago, it is now nearly
impossible to imagine a situation in which computers are
not involved at any stage from the production to experi-
ence of music [8, p1]. The necessity of using the term
“Computer Music” to describe academic contexts has con-
sequently diminished.

Holbrook and Rudi extended Lyon’s discussion by propos-
ing the use of frameworks like Post-Acousmatic [9] to re-
define “Computer Music.” Their approach incorporates the
tradition of pre-computer experimental/electronic music,
situating it as part of the broader continuum of technology-
based or technology-driven music [10].

While the strict definition of Post-Acousmatic music is
deliberately left open, one of its key aspects is the expan-
sion of music production from institutional settings to in-
dividuals and as well as the diversification of technological
usage [9, p113]. However, while the Post-Acousmatic dis-
course integrates the historical fact that declining computer
costs and increasing accessibility beyond laboratories have
enabled diverse musical expressions, it still marginalizes
much of the music that is “just using computers” and fails
to provide insights into this divided landscape.

Lyon argues that the term “computer music” is a style-
agnostic definition almost like “piano music,” implying that
it ignores the style and form inside music produced by the
instrument.

However, one of the defining characteristics of comput-
ers as a medium lies in their ability to treat musical styles
themselves as subjects of meta-manipulation through sim-
ulation and modeling. When creating instruments with
computers or when using such instruments, sound produc-
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tion involves programming—manipulating symbols embed-
ded in a particular musical culture. This recursive embed-
ding of language and recognition, which construct that mu-
sical culture, into the resulting music is a process that goes
beyond what is possible with acoustic instruments or ana-
log instruments. Magnusson refers to this characteristic of
digital instruments as “Epistemic Tools” and points out that
the computer serves to “create a snapshot of musical the-
ory, freezing musical culture in time” [11, p.173] through
formalization.

Today, many people use computers for music production
not because they consciously leverage the uniqueness of
the meta-medium, but simply because there are no quicker
or more convenient alternatives available. Even so, within
a musical culture where computers are used as a reluctant
choice, musicians are inevitably influenced by the under-
lying infrastructures like software, protocols, and formats.
As long as the history of programming languages for music
remains intertwined with the history of computer music as
it relates to specific genres or communities, it becomes dif-
ficult to analyze music created with computers as merely a
passive means.

In this paper, the history of programming languages for
music is reexamined with an approach that, in contrast to
Lyon, adopts a radically style-agnostic perspective. Rather
than focusing on what has been created with these tools,
the emphasis is placed on how these tools themselves have
been constructed. The paper centers on the following two
topics: 1. A critique of the universality of sound repre-
sentation using pulse-code modulation (PCM)—the foun-
dational concept underlying most of today’s sound pro-
gramming, by referencing early attempts at sound gener-
ation using electronic computers. 2. An examination of
the MUSIC-N family, the origin of PCM-based sound pro-
gramming, to highlight that its design varies significantly
across systems from the perspective of today’s program-
ming language design and that it has evolved over time into
a black box, eliminating the need for users to understand
its internal workings.

Ultimately, the paper concludes that programming lan-
guages for music developed since the 2000s are not solely
aimed at creating new music but also serve as alternatives
to the often-invisible technological infrastructures surround-
ing music, such as formats and protocols. By doing so, the
paper proposes new perspectives for the historical study of
music created with computers.

2. PCM AND EARLY COMPUTER MUSIC

The MUSIC I (1957) in Bell Labs [12] and succeeding
MUSIC-N family are highlighted as the earliest examples
of computer music research. However, attempts to cre-
ate music with computers in the UK and Australia prior
to MUSIC have also been documented [13]. Organizing
what was achieved by MUSIC-N and earlier efforts can
help clarify definitions of computer music.

The earliest experiments with sound generation on com-
puters in the 1950s involved controlling the intervals be-
tween one-bit pulses (on or off) to control pitch. This was
partly because the operational clock frequencies of early
computers fell within the audible range, making the soni-
fication of electrical signals a practical and cost-effective

debugging method compared to visualizing them on dis-
plays or oscilloscopes.

For instance, Louis Wilson, who was an engineer of the
BINAC in the UK, noticed that an AM radio placed near
the computer could pick up weak electromagnetic waves
generated during the switching of vacuum tubes, produc-
ing sounds. He leveraged this phenomenon by connecting
a speaker and a power amplifier to the computer’s circuit
to assist with debugging. Frances Elizabeth Holberton took
this a step further by programming the computer to gener-
ate pulses at desired intervals, creating melodies in 1949
[14].

Also, some computers at this time, such as the CSIR
Mark I (CSIRAC) in Australia often had primitive “hoot”
instructions that emit a single pulse to a speaker. Early
sound generation using computers, including the BINAC
and CSIR Mark I, primarily involved playing melodies of
existing music.

However, not all sound generation at this time was merely
involved the reproduction of existing music. Doornbusch
highlights experiments on the Pilot ACE (the Prototype
for Automatic Computing Engine) in the UK, which uti-
lized acoustic delay line memory to produce unique sounds
[13, pp.303-304]. Acoustic delay line memory, used as the
main memory in early computers such as the BINAC and
the CSIR Mark I, employed the feedback of pulses travel-
ing through mercury via a speaker and microphone setup to
retain data. Donald Davis, an engineer on the ACE project,
described the sounds it produced as follows [15, pp.19-20]:

The Ace Pilot Model and its successor, the
Ace proper, were both capable of composing
their own music and playing it on a little speaker
built into the control desk. I say composing
because no human had any intentional part in
choosing the notes. The music was very in-
teresting, though atonal, and began by play-
ing rising arpeggios: these gradually became
more complex and faster, like a developing
fugue. They dissolved into colored noise as
the complexity went beyond human understand-
ing.

This music arose unintentionally during program opti-
mization and was made possible by the “misuse” of switches
installed for debugging delay line memory. Media scholar
Miyazaki described the practice of listening to sounds gen-
erated by algorithms and their bit patterns, integrated into
programming, as “Algo- rhythmic Listening” [16].

Doornbusch warns against ignoring these early computer
music practices simply because they did not directly influ-
ence subsequent research [13, p.305]. Indeed, the sounds
produced by the Pilot ACE challenge the post-acousmatic
historical narrative, which suggests that computer music
transitioned from being democratized in closed electro-acoustic
music laboratories to individual musicians.

This is because the sounds generated by the Pilot ACE
were not created by musical experts, nor were they solely
intended for debugging purposes. Instead, they were pro-
grammed with the goal of producing interesting sounds.
Moreover, these sounds were tied to the hardware of the
acoustic delay line memory—a feature that was likely dif-



ficult to replicate, even in today’s sound programming en-
vironments.

Similarly, in the 1960s at MIT, Peter Samson took ad-
vantage of the debugging speaker on the TX-0, a machine
that had become outdated and was freely available for stu-
dents to use. He conducted experiments in which he played
melodies, such as Bach fugues, using “hoot” instruction
[17]. Samson’s experiments with the TX-0 later evolved
into the creation of a program that allowed melodies to be
described using text within MIT.

Building on this, Samson developed a program called the
Harmony Compiler for the DEC PDP-1, which was derived
from the TX-0. This program gained significant popularity
among MIT students. Around 1972, Samson began sur-
veying various digital synthesizers that were under devel-
opment at the time and went on to create a system special-
ized for computer music. The resulting Samson Box was
used at Stanford University’s CCRMA (Center for Com-
puter Research in Music and Acoustics) for over a decade
until the early 1990s and became a tool for many com-
posers to create their works [18]. Considering his exam-
ple, it is not appropriate to separate the early experiments
in sound generation by computers from the history of com-
puter music solely because their initial purpose was debug-
ging.

2.1 Acousmatic Listening, the premise of the
Universality of PCM

One of the reasons why MUSIC led to subsequent advance-
ments in research was not simply that it was developed
early, but because it was the first to implement, but be-
cause it was the first to implement sound representation
on a computer based on pulse-code modulation (PCM),
which theoretically can generate “almost any sound” [19,
p557]

PCM, the foundational digital sound representation to-
day, involves sampling audio waveforms at discrete inter-
vals and quantizing the sound pressure at each interval as
discrete numerical values.

The issue with the universalism of PCM in the history of
computer music is inherent in the concept of Acousmatic
Listening, which serves as a premise for Post-Acousmatic.
Acousmatic, introduced by Piegnot as a listening style for
tape music such as musique concrète and later theorized
by Schaeffer [9, p106], refers to a mode of listening in
which the listener refrains from imagining a specific sound
source. This concept has been widely applied in theories
of listening to recorded sound, including Michel Chion’s
analysis of sound design in film.

However, as sound studies scholar Jonathan Sterne has
pointed out, discourses surrounding acousmatic listening
often work to delineate pre-recording auditory experiences
as “natural” by contrast 1 . This implies that prior to the ad-
vent of sound reproduction technologies, listening was un-
mediated and holistic—a narrative that obscures the con-
structed nature of these assumptions.

1 Sterne later critiques the phenomenological basis of acousmatic lis-
tening, which presupposes an idealized, intact body as the listening sub-
ject. He proposes a methodology of political phenomenology centered on
impairment, challenging these normative assumptions [20]. Discussions
of universality in computer music should also address ableism, particu-
larly in relation to recording technologies and auditory disabilities.

For instance, the claim that sound reproduc-
tion has “alienated” the voice from the human
body implies that the voice and the body ex-
isted in some prior holistic, unalienated, and
self present relation. [21, p20-21]

The claim that PCM-based sound synthesis can produce
“almost any sound” is underpinned by an ideology associ-
ated with sound reproduction technologies. This ideology
assumes that recorded sound contains an “original” source
and that listeners can distinguish distortions or noise from
it. Sampling theory builds on this premise through Shan-
non’s information theory by statistically modeling human
auditory characteristics: it assumes that humans cannot
discern volume differences below certain thresholds or per-
ceive vibrations outside specific frequency ranges. By lim-
iting representation to this range, sampling theory ensures
that all audible sounds can be effectively encoded.

Incidentally, the actual implementation of PCM in MU-
SIC I only allowed for monophonic triangle waves with
controllable volume, pitch, and timing [12]. Would any-
one today describe such a system as capable of producing
“almost any sound”?

Even when considering more contemporary applications,
processes like ring modulation (RM), amplitude modula-
tion (AM), or distortion often generate aliasing artifacts
unless proper oversampling is applied. These artifacts oc-
cur because PCM, while universally suitable for reproduc-
ing recorded sound, is not inherently versatile as a medium
for generating new sounds. As Puckette has argued, al-
ternative representations, such as collections of linear seg-
ments or physical modeling synthesis, offer other possibil-
ities [22]. Therefore, PCM is not a completely universal
tool for creating sound.

3. WHAT DOES THE UNIT GENERATOR HIDE?

Beginning with version III, MUSIC took the form of an
acoustic compiler (block diagram compiler) that processes
two input sources: a score language, which represents a
list of time-varying parameters, and an orchestra language,
which describes the connections between Unit Genera-
tors such as oscillators and filters. In this paper, the term
“Unit Generator”refers to a signal processing module whose
implementation is either not open or written in a language
different from the one used by the user.

The MUSIC family, in the context of computer music
research, achieved success for performing sound synthe-
sis based on PCM but this success came with the estab-
lishment of a division of labor between professional musi-
cians and computer engineers through the development of
domain-specific languages. Mathews explained that he de-
veloped a compiler for MUSIC III in response to requests
from many composers for additional features in MUSIC II,
such as envelopes and vibrato, while also ensuring that the
program would not be restricted to a specialized form of
musical expression (Max V. Mathews 2007, 13:10-17:50).
He repeatedly stated that his role was that of a scientist
rather than a musician:

When we first made these music programs the
original users were not composers; they were
the psychologist Guttman, John Pierce, and



myself, who are fundamentally scientists. We
wanted to have musicians try the system to
see if they could learn the language and ex-
press themselves with it. So we looked for ad-
venturous musicians and composers who were
willing to experiment. [12, p17]

This clear delineation of roles between musicians and sci-
entists became one of the defining characteristics of post-
MUSIC computer music research. Paradoxically, while
computer music research aimed to create sounds never heard
before, it also paved the way for further research by allow-
ing musicians to focus on composition without having to
understand the cumbersome work of programming.

3.1 Example: Hiding Internal State Variables in
Signal Processing

Although the MUSIC N series shares a common work-
flow of using a score language and an orchestra language,
the actual implementation of each programming language
varies significantly, even within the series.

One notable but often overlooked example is MUSIGOL,
a derivative of MUSIC IV [23]. In MUSIGOL, not only
was the system itself but even the score and orchestra de-
fined by user were written entirely as ALGOL 60 language.
Similar to today’s Processing or Arduino, MUSIGOL is
one of the earliest examples of a programming language
for music implemented as an internal DSL (DSL as a li-
brary) 2 . (Therefore, according to the definition of Unit
Generator provided in this paper, MUSIGOL does not qual-
ify as a language that uses Unit Generators.)

The level of abstraction deemed intuitive for musicians
varied across different iterations of the MUSIC N series.
This can be illustrated by examining the description of a
second-order band-pass filter. The filter mixes the current
input signal Sn, the output signal from t time steps prior
On−t, and an arbitrary amplitude parameter I1, as shown
in the following equation:

On = I1 · Sn + I2 ·On−1 − I3 ·On−2

In MUSIC V, this band-pass filter can be used as shown in
Listing 1 [25, p.78]. Here, I1 represents the input bus, and
O is the output bus. The parameters I2 and I3 correspond
to the normalized values of the coefficients I2 and I3, di-
vided by I1 (as a result, the overall gain of the filter can be
greater or less than 1). The parameters Pi and Pj are nor-
mally used to receive parameters from the Score, specifi-
cally among the available P0 to P30. In this case, however,
these parameters are repurposed as general-purpose mem-
ory to temporarily store feedback signals. Similarly, other
Unit Generators, such as oscillators, reuse note parameters
to handle operations like phase accumulation. As a result,
users needed to manually calculate feedback gains based
on the desired frequency characteristics 3 , and they also
had to account for at least two sample memory spaces.

On the other hand, in later MUSIC 11, and its successor
CSound by Barry Vercoe, the band-pass filter is defined

2 While MUS10, used at Stanford University, was not an internal DSL,
it was created by modifying an existing ALGOL parser [24, p.248].

3 It is said that a preprocessing feature called CONVT could be used
to transform frequency characteristics into coefficients [25, p77].

as a Unit Generator (UGen) named reson. This UGen
takes four parameters: the input signal, center cutoff fre-
quency, bandwidth, and Q factor [26, p248]. Unlike pre-
vious implementations, users no longer need to calculate
coefficients manually, nor do they need to be aware of the
two-sample memory space. However, in MUSIC 11 and
CSound, it is possible to implement this band-pass filter
from scratch as a User-Defined Opcode (UDO) as shownin
Listing 2. Vercoe emphasized that while signal process-
ing primitives should allow for low-level operations, such
as single-sample feedback, and eliminate black boxes, it is
equally important to provide high-level modules that avoid
unnecessary complexity (“avoid the clutter”) when users
do not need to understand the internal details [26, p.247].

FLT I1 O I2 I3 Pi Pj;

Listing 1. Example of the use of FLT UGen in MUSIC V.

instr 1
la1 init 0
la2 init 0
i3 = exp(-6.28 * p6 / 10000)
i2 = 4*i3*cos(6.283185 * p5/10000) / (1+

i3)
i1 = (1-i3) * sqrt(1-1 - i2*i2/(4*i3))
a1 rand p4
la3 = la2
la2 = la1
la1 = i1*a1 + i2 * la2 - i3 * la3

out la1
endin

instr 2
a1 rand p4
a1 reson a1,p5,p6,1

endin

Listing 2. Example of scratch implementation and built-
in operation of RESON UGen respectively, in MUSIC11.
Retrieved from the original paper. (Comments are omitted
for the space restriction.)

On the other hand, in succeeding environments that in-
herit the Unit Generator paradigm, such as Pure Data [27],
Max (whose signal processing functionalities were ported
from Pure Data as MSP), SuperCollider [28], and ChucK
[29], primitive UGens are implemented in general-purpose
languages like C or C++ 4 . If users wish to define low-
level UGens (called external objects in Max and Pd), they
need to set up a development environment for C or C++.

When UGens are implemented in low-level languages like
C, even if the implementation is open-source, the division
of knowledge effectively forces users (composers) to treat
UGens as black boxes. This reliance on UGens as black
boxes reflects and deepens the division of labor between
musicians and scientists that was established in MUSIC
though it can be interpreted as both a cause and a result.

4 ChucK later introduced ChuGen, which is similar extension to
CSound’s UDO, allowing users to define UGens within the ChucK lan-
guage itself [30]. However, not all existing UGens are replaced by UDOs
by default both in CSound and ChucK, which remain supplemental fea-
tures possibly because the runtime performance of UDO is inferior to
natively implemented UGens.



For example, Puckette, the developer of Max and Pure
Data, noted that the division of labor at IRCAM between
Researchers, Musical Assistants(Realizers), and Composers
has parallels in the current Max ecosystem, where roles are
divided among Max developers themselves, developers of
external objects, and Max users [31]. As described in the
ethnography of 1980s IRCAM by anthropologist Georgina
Born, the division of labor between fundamental research
scientists and composers at IRCAM was extremely clear.
This structure was also tied to the exclusion of popular mu-
sic and its associated technologies from IRCAM’s research
focus [32].

However, such divisions are not necessarily the result of
differences in values along the axes analyzed by Born, such
as modernist/postmodernist/populist or low-tech/high-tech
distinctions 5 . This is because the black-boxing of technol-
ogy through the division of knowledge occurs in popular
music as well. Paul Théberge pointed out that the “de-
mocratization” of synthesizers in the 1980s was achieved
through the concealment of technology, which transformed
musicians as creators into consumers.

Lacking adequate knowledge of the technical
system, musicians increasingly found them-
selves drawn to prefabricated programs as a
source of new sound material. (. . . )it also sug-
gests a reconceptualization on the part of the
industry of the musician as a particular type of
consumer. [34, p.89]

This argument can be extended beyond electronic music
to encompass computer-based music in general. For ex-
ample, media researcher Lori Emerson noted that while
the proliferation of personal computers began with the vi-
sion of a “metamedium”—tools that users could modify
themselves, as exemplified by Xerox PARC’s Dynabook—
the vision was ultimately realized in an incomplete form
through devices like the Macintosh and iPad, which dis-
tanced users from programming by black-boxing function-
ality [35]. In fact, Alan Kay, the architect behind the Dyn-
abook concept, remarked that while the iPad’s appearance
may resemble the ideal he originally envisioned, its lack
of extensibility through programming renders it merely a
device for media consumption [36].

Although programming environments as tools for music
production are not widely used, the UGen concept serves
as a premise for today’s popular music production software
and infrastructure, such as audio plugin formats for DAW
softwares and WebAudio. It is known that the concept
of Unit Generators emerged either simultaneously with or
even slightly before modular synthesizers [37, p.20]. How-
ever, UGen-based languages have actively incorporated metaphors
from modular synthesizers for their user interfaces, as Ver-
coe noted that the distinction between “ar” (audio-rate) and
“kr” (control-rate) processing introduced in MUSIC 11 is
said to have been inspired by Buchla’s distinction in plug
types [38, 1:01:38–1:04:04].

However, adopting visual metaphors comes with the lim-
itation that it constrains the complexity of representation

5 David Wessel revealed that the individual referred to as RIG in Born’s
ethnography was himself and commented that Born oversimplified her
portrayal of Pierre Boulez, then director of IRCAM, as a modernist. [33]

to what is visually conceivable. In languages with visual
patching interfaces like Max and Pure Data, meta-operations
on UGens are often restricted to simple tasks, such as par-
allel duplication. Consequently, even users of Max or Pure
Data may not necessarily be engaging in forms of expres-
sions that are only possible with computers. Instead, many
might simply be using these tools as the most convenient
software equivalents of modular synthesizers.

4. CONTEXT OF PROGRAMMING LANGUAGES
FOR MUSIC AFTER 2000

Based on the discussions thus far, music programming lan-
guages developed after the 2000s can be categorized into
two distinct directions: those that narrow the scope of the
language’s role by introducing alternative abstractions at a
higher-level, distinct from the UGen paradigm, and those
that expand the general-purpose capabilities of the language,
reducing black-boxing.

Languages that pursued alternative higher-level abstrac-
tions have evolved alongside the culture of live coding,
where performances are conducted by rewriting code in
real time. The activities of the live coding community,
including groups such as TOPLAP since the 2000s, were
not only about turning coding itself into a performance but
also served as a resistance against laptop performances that
relied on black-boxed music software. This is evident in
the community’s manifesto, which states, “Obscurantism
is dangerous” [39].

Languages implemented as clients for SuperCollider, such
as IXI (on Ruby) [40], Sonic Pi (on Ruby), Overtone
(on Clojure) [41], TidalCycles (on Haskell) [42], and
FoxDot (on Python) [43], leverage the expressive power
of more general-purpose programming languages. While
embracing the UGen paradigm, they enable high-level ab-
stractions for previously difficult-to-express elements like
note values and rhythm. For example, the abstraction of
patterns in TidalCycles is not limited to music but can also
be applied to visual patterns and other outputs, meaning it
is not inherently tied to PCM-based waveform output as
the final result.

On the other hand, due to their high-level design, these
languages often rely on ad-hoc implementations for tasks
like sound manipulation and low-level signal processing,
such as effects. McCartney, the developer of SuperCol-
lider, stated that if general-purpose programming languages
were sufficiently expressive, there would be no need to cre-
ate specialized languages [1]. This prediction appears
reasonable when considering examples like MUSIGOL.
However, in practice, scripting languages that excel in dy-
namic program modification face challenges in modern pre-
emptive OS environments. For instance, dynamic mem-
ory management techniques such as garbage collection can
hinder deterministic execution timing required for real-time
processing [44].

Historically, programming languages like FORTRAN or
C served as a portable way for implementing programs
across different architectures. However, with the prolif-
eration of higher-level languages, programming in C or
C++ has become relatively more difficult, akin to assem-
bly language in earlier times. Furthermore, considering the
challenges of portability not only across different CPUs



but also diverse host environments such as OSs and the
Web, these languages are no longer as portable as they
once were. Consequently, internal DSL for music includ-
ing signal processing have become exceedingly rare, with
only a few examples such as LuaAV [45].

Instead, an approach has emerged to create general-purpose
languages specifically designed for use in music from the
ground up. One prominent example is Extempore, a live
programming environment developed by Sorensen [46].
Extempore consists of Scheme, a LISP-based language,
and xtlang, a meta-implementation on top of Scheme. While
xtlang requires users to write hardware-oriented type sig-
natures similar to those in C, it leverages the LLVM com-
piler infrastructure [47] to just-in-time (JIT) compile sig-
nal processing code, including sound manipulation, into
machine code for high-speed execution.

The expressive power of general-purpose languages and
compiler infrastructures like LLVM has given rise to an ap-
proach focused on designing languages with mathematical
formalization that reduces black-boxing. Faust [48], for
instance, is a language that retains a graph-based structure
akin to UGens but is built on a formal system called Block
Diagram Algebra. Thanks to its formalization, Faust can
be transpiled into various low-level languages such as C,
C++, or Rust and can also be used as external objects in
Max or Pure Data.

Languages like Kronos [49] and mimium [50], which
are based on the more general computational model of lambda
calculus, focus on PCM-based signal processing while ex-
ploring interactive meta-operations on programs [51] and
balancing self-contained semantics with interoperability with
other general-purpose languages [52].

Domain-specific languages (DSLs) are constructed within
a double bind: they aim to specialize in a particular pur-
pose while still providing a certain degree of expressive
freedom through coding. In this context, efforts like Ex-
tempore, Kronos, and mimium are not merely program-
ming languages for music but are also situated within the
broader research context of functional reactive program-
ming (FRP), which focuses on representing time-varying
values in computation. Most computing models lack an in-
herent concept of real-time and instead operates based on
discrete computational steps. Similarly, low-level general-
purpose programming languages do not natively include
primitives for real-time concepts. Consequently, the ex-
ploration of computational models tied to time —a domain
inseparable from music— remains vital and has the poten-
tial to contribute to the theoretical foundations of general-
purpose programming languages.

However, strongly formalized languages come with an-
other trade-off. While they allow UGens to be defined
without black-boxing, understanding the design and imple-
mentation of these languages often requires expert knowl-
edge. This can create a deeper division between language
developers and users, in contrast to the many but small
and shallow divisions seen in the multi-language paradigm,
like SuperCollider developers, external UGen developers,
client language developers (e.g., TidalCycles), SuperCol-
lider users, and client language users.

Although there is no clear solution to this trade-off, one
intriguing idea is the development of self-hosting languages
for music—that is, languages whose their own compilers

are written in the language itself. At first glance, this may
seem impractical. However, by enabling users to learn and
modify the language’s mechanisms spontaneously, this ap-
proach could create an environment that fosters deeper en-
gagement and understanding among users.

5. CONCLUSION

This paper has reexamined the history of computer mu-
sic and music programming languages with a focus on the
universalism of PCM and the black-boxing tendencies of
the Unit Generator paradigm. Historically, it was expected
that the clear division of roles between engineers and com-
posers would enable the creation of new forms of expres-
sion using computers. Indeed, from the perspective of Post-
Acousmatic discourse, some, such as Holbrook and Rudi,
still consider this division to be a positive development:

Most newer tools abstract the signal process-
ing routines and variables, making them eas-
ier to use while removing the need for under-
standing the underlying processes in order to
create meaningful results. Composers no longer
necessarily need mathematical and program-
ming skills to use the technologies. [10, p2]

However, this division of labor also creates a shared vo-
cabulary (as exemplified in the Unit Generator by Math-
ews) and serves to perpetuate it. By portraying new tech-
nologies as something externally introduced, and by fo-
cusing on the agency of those who create music with com-
puters, the individuals responsible for building program-
ming environments, software, protocols, and formats are
rendered invisible [53]. This leads to an oversight of the
indirect power relationships produced by these infrastruc-
tures.

For this reason, future research on programming languages
for music must address how the tools, including the lan-
guages themselves, contribute aesthetic value within mu-
sical culture (and what forms of musical practice they en-
able), as well as the social (im)balances of power they pro-
duce.

The academic value of the research on programming lan-
guages for music is often vaguely asserted, using terms
such as “general”, “expressive”, and “efficient”. However,
it is difficult to argue these claims when processing speed is
no longer the primary concern. Thus, as with Idiomaticity
[3] by McPherson et al., we need to develop and share a vo-
cabulary for understanding the value judgments we make
about music languages.

In a broader sense, the development of programming lan-
guages for music has also expanded to the individual level.
Examples include Gwion by Astor, which is inspired by
ChucK and enhances its abstraction, such as lambda func-
tions [54]; Vult, a DSP transpiler language created by Ruiz
for his modular synthesizer hardware [55]; and a UGen-
based live coding environment designed for web, Glicol
[56]. However, these efforts have not yet been incorporate
into academic discourse.

Conversely, practical knowledge of past languages in 1960s
as well as real-time hardware-oriented systems from the
1980s, is gradually being lost. While research efforts such
as Inside Computer Music, which analyzes historical works



of computer music, have begun [57], an archaeological
practice focused on the construction of computer music
systems themselves will also be necessary.
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