
Defining Programming languages for Music through the view of “Somewhat
Weak” Computer Music

Anonymized for review

example@example.com

ABSTRACT

This paper critically reviews the history of programming
languages for music by referring discussions from sound
studies, aiming to describe this history decoupled from com-
puter music as a form/community. This paper focuses on
critiquing the discourse of Post-Acousmatic, which inclu-
sively addresses recent trends in computer music. The uni-
versalism associated with pulse-code modulation (PCM),
which is basic assumption of today’s sound programming,
has functioned as a discourse that shapes musicians’ ex-
pectations historically, despite the fact that its expressive
range has several limits. Also, this paper points out that
the MUSIC-N family, which formed the foundation of PCM-
based sound synthesis, is contextualized not as program-
ming languages in terms of their syntactic or semantic prop-
erties, but as a lineage of workflows for generating sound
on computers, and these systems have evolved into black
boxes that minimize the need for users to understand their
internal structures over time. The paper concludes that
programming languages for music developed since the 2000s
function as a means of presenting alternatives to the often-
invisible technological infrastructures surrounding music,
such as formats and protocols, rather than solely aiming to
create novel musical styles. This conclusion paves the way
for future discussions in this research area.

1. INTRODUCTION

Programming languages and environments for music have
developed hand in hand with the history of creating mu-
sic using computers. Software and systems like Max, Pure
Data, CSound, and SuperCollider has been referred to as
“Computer Music Language” [1, 2, 3], “Language for Com-
puter Music” [4], and “Computer Music Programming Sys-
tems” [5], though there is no clear consensus on the use
of these terms. However, as the shared term “Computer
Music” implies, these programming languages are deeply
intertwined with the history of technology-driven music,
which developed under the premise that “almost any sound
can be produced” [6] through the use of computers.

In the early days, when computers were confined to re-
search laboratories and neither displays nor mouse existed,
creating sound or music with computers was inevitably

Copyright: ©2025 Anonymized for review et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

equal to the work of programming. Today, however, pro-
gramming as a means to produce sound on a computer—
rather than employing Digital Audio Workstation (DAW)
software like Pro Tools is not usual. In other words, pro-
gramming languages for music developed after the prolif-
eration of personal computers are the softwares that inten-
tionally chose programming (whether textual or graphical)
as their frontend for making sound.

Since the 1990s, the theoretical development of program-
ming languages and the various constraints required for
real-time audio processing have significantly increased the
specialized knowledge necessary for developing program-
ming languages for music today. Furthermore, some lan-
guages developed after the 2000s are not necessarily aimed
at pursuing new forms of musical expression. It seems that
there is still no unified perspective on how the value of such
languages should be evaluated.

In this paper, a critical historical review is conducted by
deriving discussions from sound studies alongside exist-
ing surveys, aiming to consider programming languages
for music independently from computer music as the spe-
cific genre. ### Use of the Term “Computer Music”

The term “Computer Music,” despite its literal and poten-
tial broad meaning, has been noted as being used within a
narrowly defined framework tied to specific styles or com-
munities, as represented in Ostartag’s Why Computer Mu-
sic Sucks [7] since the 1990s.

As Lyon observed nearly two decades ago, it is now nearly
impossible to imagine a situation in which computers are
not involved at any stage from production to experience of
music [8, p1]. The necessity of using the term “Computer
Music” to describe academic contexts, particularly those
centered around the ICMC, has consequently diminished.

Holbrook and Rudi continued Lyon’s discussion by propos-
ing the use of frameworks like Post-Acousmatic [9] to re-
define “Computer Music.” Their approach incorporates the
tradition of pre-computer experimental/electronic music,
situating it as part of the broader continuum of technology-
based or technology-driven music [10].

While the strict definition of the Post-Acousmatic music
is not given deliberately, one of its elements contains the
expansion of music production from institutional settings
to individuals and the use of the technology were diver-
sified [9, p113]. However, while the Post-Acousmatic dis-
course integrates the historical fact that declining computer
costs and access beyond laboratories have enabled diverse
musical expressions, it simultaneously marginalizes much
of the music that is “just using computers” and fails to pro-
vide insights into this divided landscape.

Lyon argues that defining computer music simply as mu-

mailto:example@example.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


sic created with computers is too permissive, while defin-
ing it as music that could not exist without computers is
too strict. He highlights the difficulty of considering in-
struments that use digital simulations, such as virtual ana-
log synthesizers, within these definitions. Furthermore, he
suggests that the term “computer music” is style-agnostic
definition almost like “piano music,” implying that it ig-
nores the style and form inside music produced by the in-
struments.

However, one of the defining characteristics of comput-
ers as a medium lies in their ability to treat musical styles
themselves as subjects of meta-manipulation through sim-
ulation and modeling. When creating instruments with
computers, or when using such instruments, sound produc-
tion involves programming—manipulating symbols embed-
ded in a particular musical culture. This recursive embed-
ding of the language and perception constituting that mu-
sical culture into the resulting music is a process that goes
beyond what is possible with acoustic instruments or ana-
log electronic instruments. Magnusson refers to this char-
acteristic of digital instruments as “Epistemic Tools” and
points out that they tend to work in the direction of rein-
forcing and solidifying musical culture:

The act of formalising is therefore always an
act of fossilisation. As opposed to the acous-
tic instrument maker, the designer of the com-
posed digital instrument frames affordances through
symbolic design, thereby creating a snapshot
of musical theory, freezing musical culture in
time. [11, p173]

Today, many people use computers for music production
not because they consciously leverage the uniqueness of
the meta-medium, but simply because there are no quicker
or more convenient alternatives available. Even so, within
a musical culture where computers are used as a default
or reluctant choice, musicians are inevitably influenced by
the underlying infrastructures like software, protocols, and
formats. As long as the history of programming languages
for music remains intertwined with the history of computer
music as it relates to specific genres or communities, it be-
comes difficult to analyze music created with computers as
a passive means.

In this paper, the history of programming languages for
music is reexamined with an approach that, opposite from
Lyon, takes an extremely style-agnostic perspective. Rather
than focusing on what has been created with these tools,
the emphasis is placed on how these tools themselves have
been constructed. The paper centers on the following two
topics:

1. A critique of the universality of sound representa-
tion using pulse-code modulation (PCM), the foun-
dational concept underlying most of today’s sound
programming, by referencing early attempts of sound
generation using electronic computers.

2. An examination of the MUSIC-N family, the origin
of PCM-based sound synthesis, to highlight that its
design varies significantly across systems from the
perspective of modern programming language de-
sign and that it has evolved over time into a black

box, eliminating the need for users to understand its
internal workings.

Ultimately, the paper concludes that programming lan-
guages for music developed since the 2000s are not solely
aimed at creating new music but also serve as alternatives
to the often-invisible technological infrastructures surround-
ing music, such as formats and protocols. By doing so, the
paper proposes new perspectives for the historical study of
music created with computers. ## PCM and Early Com-
puter Music

Among the earliest examples of computer music research,
the MUSIC I system (1957) from Bell Labs and its deriva-
tives, known as MUSIC-N, are frequently highlighted. How-
ever, attempts to create music with computers in the UK
and Australia prior to MUSIC I have also been documented
[12]. Organizing what was achieved by MUSIC-N and ear-
lier efforts can help clarify definitions of computer music.

The earliest experiments with sound generation on com-
puters in the 1950s involved controlling the intervals be-
tween one-bit pulses (on or off) to control pitch. This was
partly because the operational clock frequencies of early
computers fell within the audible range, making the sonifi-
cation of electrical signals a practical and cost-effective de-
bugging method compared to visualizing them on displays
or oscilloscopes. Some computers at this time like Aus-
tralia’s CSIR Mark I (CSIRAC) often had “hoot” primitive
instructions that emit a single pulse to a speaker.

In 1949, the background to music played on the BINAC
in UK involved engineer Louis Wilson, who noticed that
an AM radio placed nearby could pick up weak electro-
magnetic waves generated during the switching of vacuum
tubes, producing regular sounds. He leveraged this phe-
nomenon by connecting a speaker and a power amplifier
to the computer’s output, using the setup to assist in de-
bugging processes. Frances Elizabeth Holberton took this
a step further by programming the computer to generate
pulses at arbitrary intervals, creating melodies [13]. The
sound generation on BINAC and CSIR Mark I represents
early instances of using computers to play melodies from
existing music.

However, not all sound generation at this timewas merely
the reproduction of existing music. Doornbusch highlights
experiments on the British Pilot ACE (Prototype for Au-
tomatic Computing Engine: ACE), which utilized acoustic
delay line memory to produce unique sounds [12, p303-
304]. Acoustic delay line memory, used as main mem-
ory in early computers like BINAC and CSIR Mark I, em-
ployed the feedback of pulses traveling through mercury
via a speaker and microphone setup to retain data. Don-
ald Davis, an engineer on the ACE project, described the
sounds it produced as follows [14, p19-20]:

The Ace Pilot Model and its successor, the
Ace proper, were both capable of composing
their own music and playing it on a little speaker
built into the control desk. I say composing
because no human had any intentional part in
choosing the notes. The music was very in-
teresting, though atonal, and began by play-
ing rising arpeggios: these gradually became
more complex and faster, like a developing
fugue. They dissolved into colored noise as



the complexity went beyond human understand-
ing.

Loops were always multiples of 32 microsec-
onds long, so notes had frequencies which were
submultiples of 31.25 KHz. The music was
based on a very strange scale, which was noth-
ing like equal tempered or harmonic, but was
quite pleasant.

This music arose unintentionally during program opti-
mization and was made possible by “misusing” switches
installed for debugging acoustic delay line memory (p20).
Media scholar Miyazaki described the practice of listening
to sounds generated by algorithms and their bit patterns, in-
tegrated into programming and debugging, as “Algorhythmic
Listening” [15].

Doornbusch warns against ignoring early computer mu-
sic practices in Australia and the UK simply because they
did not directly influence subsequent research [12, p305].
Indeed, the tendency to treat pre-MUSIC attempts as hob-
byist efforts by engineers and post-MUSIC endeavors as
“serious” research remains common even today [16].

The sounds produced by the Pilot ACE challenge the post-
acousmatic historical narrative, which suggests that com-
puter music transitioned from being confined to specialized
laboratories to becoming accessible to individuals, includ-
ing amateurs.

This is because the sounds generated by the Pilot ACE
were not created by musical experts, nor were they solely
intended for debugging purposes. Instead, they were pro-
grammed with the goal of producing interesting sounds.
Moreover, the sounds were tied to the hardware of the
acoustic delay line memory—a feature that was likely dif-
ficult to replicate, even in modern audio programming en-
vironments.

Similarly, in the 1960s at MIT, Peter Samson took advan-
tage of the debugging speaker on the TX-0, a machine that
had become outdated and freely available for students to
use. He conducted experiments where he played melodies,
such as Bach fugues, using square waves [17]. Samson’s
experiments with the TX-0 later evolved into the creation
of a program that allowed melodies to be described using
text strings within MIT.

Building on this, Samson developed a program called the
Harmony Compiler on the DEC PDP-1, which was derived
from the TX-0. This program gained significant popularity
among MIT students. Around 1972, Samson began sur-
veying various digital synthesizers that were being devel-
oped at the time and went on to create a system special-
ized for computer music. The resulting Samson Box was
used at Stanford University’s CCRMA (Center for Com-
puter Research in Music and Acoustics) for over a decade
until the early 1990s and became a tool for many com-
posers to create their works [18]. Considering Samson’s
example, it is not appropriate to separate the early experi-
ments in sound generation by computers from the history
of computer music solely because their initial purpose was
debugging. ### Acousmatic Listening, the premise of the
Universality of PCM

One of the reasons why MUSIC led to subsequent ad-
vancements in research was not simply because it was de-
veloped early, but because it was the first to implement

sound representation on a computer based on pulse-code
modulation (PCM), which theoretically enables the rep-
resentation of “almost any sound.”

PCM, the foundational method of sound representation
on today’s computers, involves dividing audio waveforms
into discrete intervals (sampling) and representing the sound
pressure at each interval as discrete numerical values (quan-
tization).

The issue with the universalism of PCM in the history of
computer music is inherent in the concept of Acousmatic,
which serves as a premise for Post-Acousmatic. Acous-
matic, introduced by Piegnot as a listening style for tape
music such as musique concrète and later theorized by Scha-
effer, refers to a mode of listening where the listener re-
frains from imagining a specific sound source. This con-
cept has been widely applied in theories of listening to
recorded sound, including Chion’s analysis of sound de-
sign in film.

However, as sound studies scholar Jonathan Sterne has
pointed out, discourses surrounding acousmatic listening
often work to delineate pre-recording auditory experiences
as “natural” by contrast 1 . This implies that prior to the ad-
vent of recording technologies, listening was unmediated
and holistic—a narrative that obscures the constructed na-
ture of these assumptions.

For instance, the claim that sound reproduc-
tion has “alienated” the voice from the human
body implies that the voice and the body ex-
isted in some prior holistic, unalienated, and
self present relation.

They assume that, at some time prior to the
invention of sound reproduction technologies,
the body was whole, undamaged, and phenomeno-
logically coherent. [20, p20-21]

The claim that PCM-based sound synthesis can produce
“almost any sound” is underpinned by an ideology associ-
ated with recording technologies. This ideology assumes
that recorded sound contains an “original” source and that
listeners can distinguish distortions or noise from it. Sam-
pling theory builds on this premise by statistically model-
ing human auditory characteristics: it assumes that humans
cannot discern volume differences below certain thresh-
olds or perceive vibrations outside specific frequency ranges.
By limiting representation to this range, sampling theory
ensures that all audible sounds can be effectively encoded.

By the way, the actual implementation of PCM in MU-
SIC I only allowed for monophonic triangle waves with
controllable volume, pitch, and timing (MUSIC II later ex-
panded this to four oscillators) [21]. Would anyone today
describe such a system as capable of producing “infinite
variations” in sound synthesis?

Even when considering more contemporary applications,
processes like ring modulation (RM), amplitude modula-
tion (AM), or distortion often generate aliasing artifacts

1 Sterne later critiques the phenomenological basis of acousmatic lis-
tening, which presupposes an idealized, intact body as the listening sub-
ject. He proposes a methodology of political phenomenology centered on
impairment, challenging these normative assumptions [19]. Discussions
of universality in computer music should also address ableism, as seen in
the relationship between recording technologies and auditory disabilities.



unless proper oversampling is applied. These artifacts oc-
cur because PCM, while universally suitable for reproduc-
ing recorded sound, is not inherently versatile as a medium
for generating new sounds. As Puckette has argued, al-
ternative representations, such as collections of linear seg-
ments or physical modeling synthesis, present other possi-
bilities [22]. Therefore, PCM is not a completely universal
tool for creating sound.

2. WHAT DOES THE UNIT GENERATOR HIDE?

Starting with version III, MUSIC adopted the form of an
acoustic compiler (or block diagram compiler) that takes
two types of input: a score language, which represents a
list of time-varying parameters, and an orchestra language,
which describes the connections between Unit Genera-
tors such as oscillators and filters. In this paper, the term
“Unit Generator” means a signal processing module used
by the user, where the internal implementation is either not
open or implemented in a language different from the one
used by the user.

Beyond performing sound synthesis based on PCM, one
of the defining features of the MUSIC family in the con-
text of computer music research was the establishment of a
division of labor between professional musicians and com-
puter engineers through the development of domain-specific
languages. Mathews explained that he developed a com-
piler for MUSIC III in response to requests for additional
features such as envelopes and vibrato, while also ensuring
that the program would not be fixed in a static form [23,
13:10-17:50]. He repeatedly stated that his role was that of
a scientist rather than a musician:

The only answer I could see was not to make
the instruments myself—not to impose my taste
and ideas about instruments on the musicians—
but rather to make a set of fairly universal build-
ing blocks and give the musician both the task
and the freedom to put these together into his
or her instruments. [21, p16]
(. . . ) When we first made these music pro-
grams the original users were not composers;
they were the psychologist Guttman, John Pierce,
and myself, who are fundamentally scientists.
We wanted to have musicians try the system
to see if they could learn the language and ex-
press themselves with it. So we looked for ad-
venturous musicians and composers who were
willing to experiment. (p17)

This clear delineation of roles between musicians and sci-
entists became one of the defining characteristics of post-
MUSIC computer music research. Paradoxically, the act of
creating sounds never heard before using computers paved
the way for research by allowing musicians to focus on
their craft without needing to grapple with the complexi-
ties of programming.

2.1 Example: Hiding First-Order Variables in Signal
Processing

Although the MUSIC N series shares a common work-
flow of using a Score language and an Orchestra language,

the actual implementation of each programming language
varies significantly, even within the series.

One notable but often overlooked example is MUSIGOL,
a derivative of MUSIC IV [24]. In MUSIGOL, not only
was the system itself implemented differently, but even the
user-written Score and Orchestra programs were written
entirely as ALGOL 60 source code. Similar to modern
frameworks like Processing or Arduino, MUSIGOL repre-
sents one of the earliest examples of a domain-specific lan-
guage implemented as an internal DSL within a library 2 .
(Therefore, according to the definition of Unit Generator
provided in this paper, MUSIGOL does not qualify as a
language that uses Unit Generators.)

The level of abstraction deemed intuitive for musicians
varied across different iterations of the MUSIC N series.
This can be illustrated by examining the description of a
second-order band-pass filter. The filter mixes the current
input signal Sn, the output signal from t time steps prior
On−t, and an arbitrary amplitude parameter I1, as shown
in the following equation:

On = I1 · Sn + I2 ·On−1 − I3 ·On−2

In MUSIC V, this band-pass filter can be used as in 1 [26,
p78].

FLT I1 O I2 I3 Pi Pj;

Listing 1. Example of the use of RESON UGen in MUSIC
V.

Here, I1 represents the input bus, and O is the output bus.
The parameters I2 and I3 correspond to the normalized
values of the coefficients I2 and I3, divided by I1 (as a re-
sult, the overall gain of the filter can be greater or less than
1). The parameters Pi and Pj are normally used to receive
parameters from the Score, specifically among the avail-
able P0 to P30. In this case, however, these parameters
are repurposed as general-purpose memory to temporarily
store feedback signals. Similarly, other Unit Generators,
such as oscillators, reuse note parameters to handle opera-
tions like phase accumulation.

As a result, users needed to manually calculate feedback
gains based on the desired frequency characteristics 3 , and
they also had to account for using at least two sample mem-
ory spaces.

On the other hand, in MUSIC 11, developed by Barry
Vercoe, and its later iteration, CSound, the band-pass fil-
ter is defined as a Unit Generator (UGen) named reson.
This UGen accepts four parameters: the input signal, cen-
ter cutoff frequency, bandwidth, and Q factor. Unlike pre-
vious implementations, users no longer need to be aware
of the two-sample feedback memory space for the output
[27, p248]. However, in MUSIC 11 and CSound, it is still
possible to implement this band-pass filter from scratch as
a User Defined Opcode (UDO) as in 2. Vercoe empha-
sized that while signal processing primitives should allow
for low-level operations, such as single-sample feedback,
and eliminate black boxes, it is equally important to pro-
vide high-level modules that avoid unnecessary complexity

2 While MUS10, used at Stanford University, was not an internal DSL,
it was created by modifying an existing ALGOL parser [25, p248].

3 It is said that a preprocessing feature called CONVT could be used
to transform frequency characteristics into coefficients [26, p77].



(“avoid the clutter”) when users do not need to understand
the internal details [27, p247].

instr 1
la1 init 0
la2 init 0
i3 = exp(-6.28 * p6 / 10000)
i2 = 4*i3*cos(6.283185 * p5/10000) / (1+

i3)
i1 = (1-i3) * sqrt(1-1 - i2*i2/(4*i3))
a1 rand p4
la3 = la2
la2 = la1
la1 = i1*a1 + i2 * la2 - i3 * la3

out la1
endin

instr 2
a1 rand p4
a1 reson a1,p5,p6,1

endin

Listing 2. Example of scratch implementation and built-
in operation of RESON UGen respectively, in MUSIC11.
Retrieved from the original paper. (Comments are omitted
for the space restriction.)

On the other hand, in programming environments that in-
herit the Unit Generator paradigm, such as Pure Data [28],
Max (whose signal processing functionalities were ported
from Pure Data as MSP), SuperCollider [29], and ChucK
[?], primitive UGens are implemented in general-purpose
languages like C or C++. If users wish to define low-level
UGens (External Objects), they need to set up a develop-
ment environment for C or C++.

As an extension, ChucK later introduced ChuGen, which
is equivalent to CSound’s UDO, allowing users to define
low-level UGens within the ChucK language itself [30].
However, both CSound and ChucK face performance lim-
itations with UDOs during runtime compared to natively
implemented UGens. Consequently, not all existing UGens
are replaced by UDOs, which remain supplemental fea-
tures rather than primary tools.

When UGens are implemented in low-level languages like
C, even if the implementation is open-source, the division
of knowledge effectively forces users (composers) to treat
UGens as black boxes. This reliance on UGens as black
boxes reflects and deepens the division of labor between
musicians and scientists that Mathews helped establish—a
structure that can be seen as both a cause and a result of
this paradigm.

For example, Puckette, the developer of Max and Pure
Data, noted that the division of labor at IRCAM between
researchers, Musical Assistants/realizers, and composers
has parallels in the current Max ecosystem, where the roles
are divided into software developers, External Objects de-
velopers, and Max users [31]. As described in the ethnog-
raphy of 1980s IRCAM by anthropologist Georgina Born,
the division of labor between fundamental research scien-
tists and composers at IRCAM was extremely clear. This
structure was also tied to the exclusion of popular music
and its associated technologies in IRCAM’s research focus
[32].

However, such divisions are not necessarily the result of
differences in values along the axes analyzed by Born, such

as modernist/postmodernist/populist or low-tech/high-tech
distinctions 4 . This is because the black-boxing of technol-
ogy through the division of knowledge occurs in popular
music as well. Paul Théberge pointed out that the “de-
mocratization” of synthesizers in the 1980s was achieved
through the concealment of technology, which transformed
musicians as creators into consumers.

Lacking adequate knowledge of the technical
system, musicians increasingly found them-
selves drawn to prefabricated programs as a
source of new sound material. As I have ar-
gued, however, this assertion is not simply a
state ment of fact; it also suggests a recon-
ceptualization on the part of the industry of
the musician as a particular type of consumer.
[34, p89]

This argument can be extended beyond electronic music
to encompass computer-based music in general. For ex-
ample, media researcher Lori Emerson noted that while
the proliferation of personal computers began with the vi-
sion of “metamedia”—tools that users could modify them-
selves, as exemplified by Xerox PARC’s Dynabook—the
vision was ultimately realized in an incomplete form through
devices like the Macintosh and iPad, which distanced users
from programming by black-boxing functionality [35]. In
fact, Alan Kay, the architect behind the Dynabook concept,
remarked that while the iPad’s appearance may resemble
the ideal he originally envisioned, its lack of extensibility
through programming renders it merely a device for media
consumption [36].

Although programming environments as tools for music
production are not widely used, the Unit Generator con-
cept, alongside MIDI, serves as a foundational paradigm
for today’s consumer music production software and in-
frastructure, including Web Audio. It is known that the
concept of Unit Generators emerged either simultaneously
with or even slightly before modular synthesizers [?, p20].
However, UGen-based languages have actively incorpo-
rated the user interface metaphors of modular synthesiz-
ers, as Vercoe said that the distinction between “ar” (audio-
rate) and “kr” (control-rate) processing introduced in MU-
SIC 11 is said to have been inspired by Buchla’s differen-
tiation between control and audio signals in its plug type
[?, 1:01:38–1:04:04].

However, adopting visual metaphors comes with the lim-
itation that it constrains the complexity of representation
to what is visually conceivable. In languages with visual
patching interfaces like Max and Pure Data, meta-operations
on UGens are often restricted to simple tasks, such as par-
allel duplication. Consequently, even users of Max or Pure
Data may not necessarily be engaging in expressions that
are only possible with computers. Instead, many might
simply be using these tools as the most convenient soft-
ware equivalents of modular synthesizers.

4 David Wessel revealed that the individual referred to as RIG in Born’s
ethnography was himself and commented that Born oversimplified her
portrayal of Pierre Boulez, then director of IRCAM, as a modernist. [33]



3. CONTEXT OF PROGRAMMING LANGUAGES
FOR MUSIC AFTER 2000

Based on the discussions thus far, music programming lan-
guages developed after the 2000s can be categorized into
two distinct directions: those that narrow the scope of the
language’s role by attempting alternative abstractions at a
higher level, distinct from the Unit Generator paradigm,
and those that expand the general-purpose capabilities of
the language, reducing black-boxing.

Languages that pursued alternative abstractions at higher
levels have evolved alongside the culture of live coding,
where performances are conducted by rewriting code in
real time. The activities of the live coding community,
including groups such as TOPLAP since the 2000s, were
not only about turning coding itself into a performance but
also served as a resistance against laptop performances that
relied on black-boxed music software. This is evident in
the community’s manifesto, which states, “Obscurantism
is dangerous” [37].

Languages implemented as clients for SuperCollider, such
as IXI (on Ruby) [38], Sonic Pi(on Ruby), Overtone
(on Clojure) [39], TidalCycles (on Haskell) [40], and
FoxDot (on Python) [41], leverage the expressive power
of more general-purpose programming languages. While
embracing the UGen paradigm, they enable high-level ab-
stractions for previously difficult-to-express elements like
note values and rhythm. For example, the abstraction of
patterns in TidalCycles is not limited to music but can also
be applied to visual patterns and other outputs, meaning it
is not inherently tied to PCM-based waveform output as
the final result.

On the other hand, due to their high-level design, these
languages often rely on ad hoc implementations for tasks
like sound manipulation and low-level signal processing,
such as effects.

McCartney, the developer of SuperCollider, once stated
that if general-purpose programming languages were suf-
ficiently expressive, there would be no need to create spe-
cialized languages [1]. This prediction appears reasonable
when considering examples like MUSIGOL. However, in
practice, scripting languages that excel in dynamic pro-
gram modification face challenges in modern preemptive
OS environments. For instance, dynamic memory man-
agement techniques such as garbage collection can hinder
the ability to guarantee deterministic execution timing re-
quired for real-time processing [?].

Historically, programming in languages like FORTRAN
or C served as a universal method for implementing au-
dio processing on computers, independent of architecture.
However, with the proliferation of general-purpose pro-
gramming languages, programming in C or C++ has be-
come relatively more difficult, akin to programming in as-
sembly language in earlier times. Furthermore, consider-
ing the challenges of portability across not only different
CPUs but also diverse host environments such as operat-
ing systems and the Web, these languages are no longer as
portable as they once were. Consequently, systems target-
ing signal processing implemented as internal DSLs have
become exceedingly rare, with only a few examples like
LuaAV [42].

Instead, an approach has emerged to create general-purpose

languages specifically designed for use in music from the
ground up. One prominent example is Extempore, a live
programming environment developed by Sorensen [?]. Ex-
tempore consists of Scheme, a LISP-based language, and
xtlang, a meta-implementation on top of Scheme. While
xtlang requires users to write hardware-oriented type sig-
natures similar to those in C, it leverages the LLVM com-
piler infrastructure [43] to just-in-time (JIT) compile sig-
nal processing code, including sound manipulation, into
machine code for high-speed execution.

The expressive power of general-purpose languages and
compiler infrastructures like LLVM have given rise to an
approach focused on designing languages with formalized
abstractions that reduce black-boxing. Faust [44], for ex-
ample, is a language that retains a graph-based structure
akin to UGens but is built on a formal system called Block
Diagram Algebra. This system integrates primitives for
reading and writing internal states, which are essential for
operations like delays and filters. Thanks to its formal-
ization, Faust can be transpiled into general-purpose lan-
guages such as C, C++, or Rust and can also be used as an
External Object in environments like Max or Pure Data.

Languages like Kronos [?] and mimium [?], which are
based on the more general computational model of lambda
calculus, focus on PCM-based signal processing while ex-
ploring interactive meta-operations on programs [?] and
balancing self-contained semantics with interoperability with
other general-purpose languages [?].

Domain-specific languages (DSLs) are constructed within
a double bind: they aim to specialize in a particular pur-
pose while still providing a certain degree of expressive
freedom through programming. In this context, efforts like
Extempore, Kronos, and mimium are not merely program-
ming languages for music but are also situated within the
broader research context of Functional Reactive Program-
ming (FRP), which focuses on representing time-varying
values in computation. Most computer hardware lacks an
inherent concept of real time and instead operates based on
discrete computational steps. Similarly, low-level general-
purpose programming languages do not natively include
primitives for real-time concepts. Consequently, the ex-
ploration of computational models tied to time—a domain
inseparable from music—remains vital and has the poten-
tial to contribute to the theoretical foundations of general-
purpose programming languages.

However, strongly formalized languages come with their
own trade-offs. While they allow UGens to be defined
without black-boxing, understanding the design and im-
plementation of these languages often requires advanced
knowledge. This can create a significant divide between
language developers and users, in contrast to the more seg-
mented roles seen in the Multi-Language paradigm—such
as SuperCollider developers, external UGen developers,
client language developers (e.g., TidalCycles), SuperCol-
lider users, and client language users.

Although there is no clear solution to this trade-off, one
intriguing idea is the development of self-hosting languages
for music—that is, languages where their own compilers
are written in the language itself. At first glance, this may
seem impractical. However, by enabling users to learn and
modify the language’s mechanisms spontaneously, this ap-
proach could create an environment that fosters deeper en-



gagement and understanding among users.

4. CONCLUSION

This paper has reexamined the history of computer mu-
sic and music programming languages with a focus on the
universalism of PCM and the black-boxing tendencies of
the Unit Generator paradigm. Historically, it was expected
that the clear division of roles between engineers and com-
posers would enable the creation of new forms of expres-
sion using computers. Indeed, from the perspective of Post-
Acousmatic discourse, some, like Holbrook and Rudi, still
consider this division to be a positive development:

Most newer tools abstract the signal process-
ing routines and variables, making them eas-
ier to use while removing the need for under-
standing the underlying processes in order to
create meaningful results. Composers no longer
necessarily need mathematical and program-
ming skills to use the technologies. These ab-
stractions are important, as they hide many of
the technical details and make the software
and processes available to more people, and
form the basis for what can arguably be seen
as a new folk music. [10, p2]

However, this division of labor also creates a shared vocabulary—
exemplified by the Unit Generator itself, pioneered by Mathews—
and works to perpetuate it. By portraying new technologies
as something externally introduced, and by focusing on the
agency of those who create music with computers, the in-
dividuals responsible for building the programming envi-
ronments, software, protocols, and formats are rendered
invisible [45]. This leads to an oversight of the indirect
power relationships produced by these infrastructures.

For this reason, future research on programming languages
for music must address how the tools, including the lan-
guages themselves, contribute aesthetic value within mu-
sical culture (and what forms of musical practice they en-
able), as well as the social (im)balances of power they pro-
duce.

It has been noted in programming language research that
evaluation criteria such as efficiency, expressiveness, and
generality are often ambiguous [46]. This issue is even
more acute in fields like music, where no clear evaluation
criteria exist. Thus, as McPherson et al. have proposed
with the concept of Idiomaticity [3], we need to develop
and share a vocabulary for understanding the value judg-
ments we make about programming languages in general.

In a broader sense, the creation of programming languages
for music has also expanded to the individual level. Ex-
amples include Gwion by Astor, which builds on ChucK
and enhances its abstraction capabilities with features like
lambda functions [?]; Vult, a DSP transpiler language cre-
ated by Ruiz for his modular synthesizer hardware [?]; and
a UGen-based live coding environment designed for web
execution, Glicol [47]. However, these efforts have not
yet been adequately integrated into academic discourse.

Conversely, practical knowledge of university-researched
languages from the past, as well as real-time hardware-
oriented systems from the 1980s, is gradually being lost.
While research efforts such as Inside Computer Music, which

analyzes historical works of computer music, have begun
[?], an archaeological practice focused on the construction
of computer music systems will also be necessary in the fu-
ture. This includes not only collecting primary resources,
such as oral archives from those involved, but also recon-
structing the knowledge and practices behind these sys-
tems.

Acknowledgments

At the end of the Conclusions, acknowledgments to peo-
ple, projects, funding agencies, etc. can be included af-
ter the second-level heading “Acknowledgments” (with no
numbering).

5. REFERENCES

[1] J. McCartney, “Rethinking the Computer Music Lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, Dec. 2002.

[2] H. Nishino and R. Nakatsu, “Computer Music Lan-
guages and Systems: The Synergy Between Technol-
ogy and Creativity,” in Handbook of Digital Games
and Entertainment Technologies, 2016.

[3] A. McPherson and K. Tahlroǧlu, “Idiomatic Patterns
and Aesthetic Influence in Computer Music Lan-
guages,” Organised Sound, vol. 25, no. 1, pp. 53–63,
2020.

[4] R. B. Dannenberg, “Languages for Computer Music,”
Frontiers in Digital Humanities, vol. 5, Nov. 2018.

[5] V. Lazzarini, “The Development of Computer Music
Programming Systems,” Journal of New Music Re-
search, vol. 42, no. 1, pp. 97–110, 2013.

[6] M. V. Mathews, “An Acoustic Compiler for Music
and Psychological Stimuli,” The Bell System Technical
Journal, vol. 40, no. 3, pp. 677–694, May 1961.

[7] B. Ostertag, “Why Computer Music Sucks,”
https://web.archive.org/web/20160312125123/http://bobostertag.com/writings-
articles-computer-music-sucks.htm, 1998.

[8] E. Lyon, “Do We Still Need Computer Music?” in
EMS, 2006.

[9] M. Adkins, R. Scott, and P. A. Tremblay, “Post-
Acousmatic Practice: Re-evaluating Schaeffer’s Her-
itage,” Organised Sound, vol. 21, no. 2, pp. 106–116,
Aug. 2016.

[10] U. Holbrook and J. Rudi, “Computer Music and Post-
Acousmatic Practices: International Computer Music
Conference 2022,” in Proceedings of the International
Computer Music Conference, ICMC 2022, ser. Inter-
national Computer Music Conference, ICMC Proceed-
ings, G. Torre, Ed. San Francisco: International Com-
puter Music Association, Jul. 2022, pp. 140–144.

[11] T. Magnusson, “Of Epistemic Tools: Musical Instru-
ments as Cognitive Extensions,” Organised Sound,
vol. 14, no. 2, pp. 168–176, Aug. 2009.



[12] P. Doornbusch, “Early Computer Music Experiments
in Australia and England,” Organised Sound, vol. 22,
no. 2, pp. 297–307, Aug. 2017.

[13] R. D. Woltman, F. B. Woltman, L. D. Wilson, A. B.
Tonik, J. K. Swearingen, C. M. Shuler, J. E. Sberro,
J. E. Sammet, H. W. Matter, D. W. Marquardt, F. K.
Koons, M. W. Huff, F. E. Holberton, C. Hammer, D. B.
Dixon, E. L. Delves, G. Danehower, M. P. Chinitz,
L. S. Carter, J. Bartik, L. W. Armstrong, D. P. Arm-
strong, and A. E. Adams, “UNIVAC Conference.”
Charles Babbage Institute, Tech. Rep., 1990.

[14] D. Davis, “Very Early Computer Music,” Resurrection
The Bulletin of the Computer Conservation Society,
vol. 10, pp. 19–20, 1994.

[15] S. Miyazaki, “Algorhythmic Listening 1949-1962 Au-
ditory Practices of Early Mainframe Computing,” in
AISB/IACAP World Congress 2012: Symposium on the
History and Philosophy of Programming, Part of Alan
Turing Year 2012, 2012, p. 5.

[16] H. Tanaka, All About Chiptune: New Music Born from
Games. Seibundo Shinkosha, 2017.

[17] S. Levy, Hackers: Heroes of the Computer Revolution
- 25th Anniversary Edition, 1st ed. O’Reilly Media,
May 2010.

[18] D. G. Loy, “Life and Times of the Samson Box,” Com-
puter Music Journal, vol. 37, no. 3, pp. 26–48, 2013.

[19] J. Sterne, Diminished Faculties: A Political Phe-
nomenology of Impairment. Durham: Duke Univ
Press, Jan. 2022.

[20] ——, The Audible Past: Cultural Origins of Sound Re-
production. Durham: Duke University Press, 2003.

[21] M. Mathews and C. Roads, “Interview with Max Math-
ews,” Computer Music Journal, vol. 4, no. 4, pp. 15–
22, 1980.

[22] M. Puckette, “The Sampling Theorem and Its Discon-
tents,” International Computer Music Conference, pp.
1–14, 2015.

[23] M. V. Mathews, “Max Mathews Full Interview |
NAMM.Org,” https://www.namm.org/video/orh/max-
mathews-full-interview, Mar. 2007.

[24] D. M. Innis, “Sound Synthesis by Computer: Musigol,
a Program Written Entirely in Extended Algol,” Per-
spectives of New Music, vol. 7, no. 1, pp. 66–79, 1968.

[25] G. Loy and C. Abbott, “Programming Languages for
Computer Music Synthesis, Performance, and Compo-
sition,” ACM Comput. Surv., vol. 17, no. 2, pp. 235–
265, Jun. 1985.

[26] M. V. Mathews and J. E. Miller, The Technology of
Computer Music. M.I.T. Press, 1969.

[27] B. L. Vercoe, “Computer Systems and Languages for
Audio Research,” The New World of Digital Audio (Au-
dio Engineering Society Special Edition), pp. 245–250,
1983.

[28] M. Puckette, “Pure Data,” in International Computer
Music Conference Proceedings. Michigan Publishing,
University of Michigan Library, 1997.

[29] J. McCartney, “SuperCollider, a New Real Time Syn-
thesis Language,” in International Computer Music
Conference Proceedings. Michigan Publishing, 1996.

[30] S. Salazar and G. Wang, “CHUGENS, CHUB-
GRAPHS, CHUGINS: 3 TIERS FOR EXTENDING
CHUCK,” in International Computer Music Confer-
ence Proceedings, 2012, pp. 60–63.

[31] I. Reese, “47 • Miller Puckette • Max/MSP & Pure
Data,” May 2020.

[32] G. Born, Rationalizing Culture. University of Cali-
fornia Press, 1995, no. 1.

[33] G. Taylor, “Article: An Interview With David Wes-
sel | Cycling ’74,” https://cycling74.com/articles/an-
interview-with-david-wessel, 1999.

[34] P. Théberge, Any Sound You Can Imagine: Mak-
ing Music/Consuming Technology, ser. Music/Culture.
Hanover, NH: Wesleyan University Press : University
Press of New England, 1997.

[35] L. Emerson, Reading Writing Interfaces: From the
Digital to the Bookbound. Univ of Minnesota Press,
Nov. 2014.

[36] A. C. Kay, “American Computer Pioneer Alan
Kay’s Concept, the Dynabook, Was Published
in 1972. How Come Steve Jobs and Apple
iPad Get the Credit for Tablet Invention?”
https://www.quora.com/American-computer-pioneer-
Alan-Kay-s-concept-the-Dynabook-was-published-in-
1972-How-come-Steve-Jobs-and-Apple-iPad-get-the-
credit-for-tablet-invention, Apr. 2019.

[37] TOPLAP, “ManifestoDraft - Toplap,”
https://toplap.org/wiki/ManifestoDraft, 2004.

[38] T. Magnusson, “The IXI Lang: A SuperCollider Par-
asite for Live Coding,” International Computer Music
Conference Proceedings, vol. 2011, 2011.

[39] S. Aaron and A. F. Blackwell, “From Sonic Pi to
Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages,” Proceedings of
the ACM SIGPLAN International Conference on Func-
tional Programming, ICFP, pp. 35–46, 2013.

[40] A. McLean, “Making Programming Languages to
Dance to: Live Coding with Tidal,” in FARM 2014 -
Proceedings of the 2014 ACM SIGPLAN International
Workshop on Functional Art, Music, Modelling and
Design. New York, New York, USA: Association for
Computing Machinery, 2014, pp. 63–70.

[41] R. Kirkbride, “FoxDot: Live Coding with Python
and Supercollider,” in Proceedings of the International
Conference on Live Interfaces, 2016, pp. 194–198.

[42] G. Wakefield, W. Smith, and C. Roberts, “LuaAV: Ex-
tensibility and Heterogeneity for Audiovisual Comput-
ing,” in Proceeding of Linux Audio Conference, 2010.



[43] C. Lattner and V. Adve, “LLVM: A Compila-
tion Framework for Lifelong Program Analysis &
Transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization. IEEE
Computer Society, 2004, p. 75.

[44] Y. Orlarey, D. Fober, S. Letz, and S. Letz, “FAUST : An
Efficient Functional Approach to DSP Programming,”
in New Computational Paradigms for Computer Mu-
sic. DELATOUR FRANCE, 2009.

[45] J. Sterne, “There Is No Music Industry,” Media Indus-
tries Journal, vol. 1, no. 1, pp. 50–55, Jan. 2014.

[46] S. Markstrum, “Staking Claims: A History of Pro-
gramming Language Design Claims and Evidence: A
Positional Work in Progress,” Evaluation and Usability
of Programming Languages and Tools, PLATEAU’10,
2010.

[47] Q. Lan, “Glicol,” https://glicol.org/, 2020.


	 1. Introduction
	 2. What Does the Unit Generator Hide?
	2.1 Example: Hiding First-Order Variables in Signal Processing

	 3. Context of Programming Languages for Music After 2000
	 4. Conclusion
	 5. References

