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ABSTRACT

This paper critically reviews the history of programming

languages for music, distinct from computer music as a

genre, by drawing on discussions from sound studies. The

paper focuses on the universalist assumptions around pulse-
code modulation and the Unit Generator concept estab-

lished by the MUSIC-N family, which established a lin-

eage of role between composers and scientists which tends

to turn composers into consumers. The paper concludes

that programming languages for music developed after the

2000s present alternatives to the often-invisible technolog-

ical infrastructures surrounding music, such as formats and
protocols, rather than solely aiming to create novel musi-

cal styles.

1. INTRODUCTION

Programming languages and environments for music such
as Max, Pure Data, Csound, and SuperCollider, have been
referred to as “computer music language” [1, 2, 3], “lan-
guage for computer music” [4], and “computer music pro-
gramming systems” [5], though there is no clear consen-
sus on the use of these terms. However, as the shared term
“computer music” implies, these programming languages
are deeply intertwined with the history of technology-driven
music, which developed under the premise that “almost
any sound can be produced” [6, p557] through the use of
computers.

In the early days, when computers existed only in re-
search laboratories and neither displays nor mice existed,
creating sound or music with computers was inevitably
equivalent to programming. Today, however, programming
as a means to produce sound on a computer—rather than
employing digital audio workstation (DAW) software, such
as Pro Tools is not popular. In other words, programming
languages for music developed after the proliferation of
personal computers are the software tools that intention-
ally chose programming (whether textual or graphical) as
their frontend for making sound.

Since the 1990s, the theoretical development of program-
ming languages and the various constraints required for
real-time audio processing have significantly increased the
specialized knowledge necessary for developing program-
ming languages for music today. Furthermore, some lan-
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guages developed after the 2000s are not necessarily aimed
at pursuing new forms of musical expression, and there is
still no unified perspective on how their values should be
evaluated.

This paper is a critical historical review that draws on
discussions from sound studies and existing surveys to ex-
amine programming languages for music as distinct from
computer music as the specific genre.

1.1 Use of the Term “Computer Music”

Since the 1990s, the term “computer music,” despite its
literal and potentially broad meaning, has been noted for
being used within a narrowly defined framework tied to
specific styles or communities, as explored in Ostertag’s
Why Computer Music Sucks [7].

As Lyon observed nearly two decades ago, it is now nearly
impossible to imagine a situation in which computers are
not involved at any stage from the production to experi-
ence of music [8, pl]. The necessity of using the term
“computer music” in academic contexts has consequently
diminished.

Holbrook and Rudi extended Lyon’s discussion by propos-
ing the use of frameworks such as post-acoutmatic [9] to
redefine computer music. Their approach situates the tradi-
tion of pre-computer experimental/electronic music as part
of the broader continuum of technology-based or technology-
driven music [10].

Although the strict definition of post-acousmatic music is
deliberately left open, one of its key aspects is the expan-
sion of music production from institutional settings to in-
dividuals and as well as the diversification of technological
usage [9, p113]. However, despite integrating the historical
fact that declining computer costs and increasing accessi-
bility beyond laboratories have enabled diverse musical ex-
pressions, the post-acousmatic discourse still marginalizes
much of the music that is “just using computers” and fails
to provide insights into this divided landscape.

Lyon argues that the term “computer music” is a style-
agnostic definition, almost like “piano music,” implying
that it ignores the style and form of music produced by the
instrument. However, one of the defining characteristics
of computers as a medium lies in their ability to treat mu-
sical styles themselves as subjects of meta-manipulation
through simulation and modeling. When creating instru-
ments with computers or using such instruments, sound
production involves programming—manipulating symbols
embedded in a particular musical culture. This recursive
embedding of language and recognition, which construct
that musical culture, into the resulting music is a process
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that exceeds what is possible with acoustic instruments or
analog instruments. Magnusson refers to this characteris-
tic of digital instruments as “epistemic tools” and points
out that the computer serves to “create a snapshot of mu-
sical theory, freezing musical culture in time” [11, p.173]
through formalization.

Today, many people use computers for music production
not because they consciously leverage the uniqueness of
the meta-medium, but simply because there are no quicker
or more convenient alternatives available. Even so, within
a musical culture where computers are used out of neces-
sity rather than preference, musicians are inevitably influ-
enced by the underlying infrastructures such as software,
protocols, and formats. As long as the history of pro-
gramming languages for music remains intertwined with
the history of computer music as it relates to specific gen-
res or communities, it will be difficult to analyze music
created with computers as merely a passive means.

In this paper, the history of programming languages for
music is reexamined with an approach that, unlike Lyon’s,
adopts a radically style-agnostic perspective. Rather than
focusing on what has been created with these tools, the em-
phasis is placed on how these tools themselves have been
constructed. The paper centers on the following two topics:
1. A critique of the universality of sound representation us-
ing pulse-code modulation (PCM)—the foundational con-
cept underlying most of today’s sound programming, by
referencing early attempts at sound generation using elec-
tronic computers. 2. An examination of the MUSIC-N
family, the origin of PCM-based sound programming, to
highlight that its design varies significantly across systems
from the perspective of today’s programming language de-
sign and that it has evolved over time into a black box,
eliminating the need for users to understand its internal
workings.

Ultimately, the paper concludes that programming lan-
guages for music developed since the 2000s are not solely
aimed at creating new music but also serve as alternatives
to the often-invisible technological infrastructures surround-
ing music such as formats and protocols. Thus, the paper
proposes new perspectives for the historical study of music
created with computers.

2. PCM AND EARLY COMPUTER MUSIC

The MUSIC I (1957) in Bell Labs [12] and succeeding
MUSIC-N family are highlighted as the earliest examples
of computer music research. However, attempts to cre-
ate music with computers in the UK and Australia prior
to MUSIC have also been documented [13].

The earliest experiments with sound generation on com-
puters in the 1950s involved controlling the intervals of
one-bit pulses to control pitch. This was partly because
the operational clock frequencies of early computers fell
within the audible range, making the sonification of electri-
cal signals a practical and cost-effective debugging method
compared to visualizing them on displays or oscilloscopes.

For instance, Louis Wilson, who was an engineer of the
BINAC in the UK, noticed that an AM radio placed near
the computer could pick up weak electromagnetic waves
generated during the switching of vacuum tubes, produc-
ing sounds. He leveraged this phenomenon by connecting

a speaker and a power amplifier to the computer’s circuit
to assist with debugging. Frances Elizabeth Holberton took
this a step further by programming the computer to gener-
ate pulses at desired intervals, creating melodies in 1949
[14].

Further, some computers at this time, such as the CSIR
Mark I (CSIRAC) in Australia often had primitive “hoot”
instructions that emitted a single pulse to a speaker. Early
sound generation using computers, including the BINAC
and CSIR Mark I, primarily involved playing melodies of
existing music.

However, not all sound generation at this time was merely
the reproduction of existing music. Doornbusch highlights
experiments on the Pilot ACE (the Prototype for Automatic
Computing Engine) in the UK, which utilized acoustic de-
lay line memory to produce unique sounds [13, pp.303-
304]. Acoustic delay line memory, used as the main mem-
ory in early computers, such as the BINAC and the CSIR
Mark I, employed the feedback of pulses traveling through
mercury via a speaker and microphone setup to retain data.
Donald Davis, an engineer on the ACE project, described
the sounds it produced as follows [15, pp.19-20]:

The Ace Pilot Model and its successor, the
Ace proper, were both capable of composing
their own music and playing it on a little speaker
built into the control desk. I say composing
because no human had any intentional part in
choosing the notes. The music was very in-
teresting, though atonal, and began by play-
ing rising arpeggios: these gradually became
more complex and faster, like a developing
fugue. They dissolved into colored noise as
the complexity went beyond human understand-
ing.

This music arose unintentionally during program opti-
mization and was made possible by the “misuse” of switches
installed for debugging delay line memory. Media scholar,
Miyazaki, described the practice of listening to sounds gen-
erated by algorithms and their bit patterns, integrated into
programming, as “Algo-rhythmic Listening” [16].

Doornbusch warns against ignoring these early computer
music practices simply because they did not directly influ-
ence subsequent research [13, p.305]. Indeed, the sounds
produced by the Pilot ACE challenge the post-acousmatic
historical narrative, which suggests that computer music
transitioned from being democratized in closed electro-
acoustic music laboratories to being embraced by individ-
ual musicians.

This is because the sounds generated by the Pilot ACE
were not created by musical experts, nor were they solely
intended for debugging purposes. Instead, they were pro-
grammed with the goal of producing interesting sounds.
Moreover, these sounds were tied to the hardware of the
acoustic delay line memory—a feature that is likely diffi-
cult to replicate, even in today’s sound programming envi-
ronments.

Similarly, in the 1960s at the Massachusetts Institute of
Technology (MIT), Peter Samson exploited the debugging
speaker on the TX-0, a machine that had become outdated
and was freely available for students to use. He conducted



experiments in which he played melodies, such as Bach
fugues, using “hoot” instruction [17].

Building on this, Samson developed a program called the
Harmony Compiler for the DEC PDP-1, which was derived
from the TX-0. This program gained significant popularity
among MIT students. Around 1972, Samson began sur-
veying various digital synthesizers that were under devel-
opment at the time and went on to create a system special-
ized for computer music. The resulting Samson Box was
used at Stanford University’s CCRMA (Center for Com-
puter Research in Music and Acoustics) for over a decade
until the early 1990s and became a tool for many com-
posers to create their works [18]. Considering his exam-
ple, it is not appropriate to separate the early experiments
in sound generation by computers from the history of com-
puter music solely because their initial purpose was debug-

ging.

2.1 Acousmatic Listening, the premise of the
Universality of PCM

One of the reasons why MUSIC led to subsequent advance-
ments in research was not simply that it was developed
early, but because it was the first to implement sound rep-
resentation on a computer based on PCM, which theoreti-
cally can generate “almost any sound”.

PCM, the foundational digital sound representation to-
day, involves sampling audio waveforms at discrete inter-
vals and quantizing the sound pressure at each interval as
discrete numerical values.

The problem with the universalism of PCM in the history
of computer music is inherent in the concept of acousmatic
listening, which serves as a premise for post-acousmatic.
Acousmatic listening, introduced by Piegnot as a listening
style for tape music, such as musique concrete, and later
theorized by Schaeffer [9, p106], refers to a mode of lis-
tening in which the listener refrains from imagining a spe-
cific sound source. This concept has been widely applied
in theories of listening to recorded sound, including Michel
Chion’s analysis of sound design in film.

However, as sound studies scholar, Jonathan Sterne, has
observed, discourses surrounding acousmatic listening of-
ten work to delineate pre-recording auditory experiences as
“natural” by contrast ' . This implies that prior to the ad-
vent of sound reproduction technologies, listening was un-
mediated and holistic—a narrative that obscures the con-
structed nature of these assumptions.

For instance, the claim that sound reproduc-
tion has “alienated” the voice from the human
body implies that the voice and the body ex-
isted in some prior holistic, unalienated, and
self present relation. [20, p20-21]

The claim that PCM-based sound synthesis can produce
“almost any sound” is underpinned by an ideology associ-
ated with sound reproduction technologies. This ideology

I Sterne later critiques the phenomenological basis of acousmatic lis-
tening, which presupposes an idealized, intact body as the listening sub-
ject. He proposes a methodology of political phenomenology centered on
impairment, challenging these normative assumptions [19]. Discussions
of universality in computer music should also address ableism, particu-
larly in relation to recording technologies and auditory disabilities.

assumes that recorded sound contains an “original” source
and that listeners can distinguish distortions or noise from
it. Sampling theory builds on this premise through Shan-
non’s information theory by statistically modeling human
auditory characteristics: it assumes that humans cannot
discern volume differences below certain thresholds or per-
ceive vibrations outside specific frequency ranges. By lim-
iting representation to the reconizable range, sampling the-
ory ensures that all audible sounds can be effectively en-
coded.

Incidentally, the actual implementation of PCM in MU-
SIC T only allowed for monophonic triangle waves with
controllable volume, pitch, and timing [12]. Would any-
one today describe such a system as capable of producing
“almost any sound”?

Even when considering more contemporary applications,
processes like ring modulation and amplitude modulation,
or distortion often cause aliasing artifacts unless proper
oversampling is applied. These artifacts occur because
PCM, while universally suitable for reproducing recorded
sound, is not inherently versatile as a medium for generat-
ing new sounds. As Puckette argues, alternative represen-
tations, for instance, representation by a sequence of linear
segments or physical modeling synthesis, offer other possi-
bilities [21]. Therefore, PCM is not a completely universal
tool for creating sound.

3. WHAT DOES THE UNIT GENERATOR HIDE?

Beginning with Version III, MUSIC took the form of a
block diagram compiler that processes two input sources: a
score language, which represents a list of time-varying pa-
rameters, and an orchestra language, which describes the
connections between unit generator (UGen) such as os-
cillators and filters. In this paper, the term “UGen” refers
to a signal processing module whose implementation is ei-
ther not open or written in a language different from the
one used by the user.

The MUSIC family, in the context of computer music
research, achieved success for performing sound synthe-
sis based on PCM but this success came with the estab-
lishment of a division of labor between professional musi-
cians and computer engineers through the development of
domain-specific languages. Mathews explained that he de-
veloped a compiler for MUSIC III in response to requests
from many composers for additional features in MUSIC
II, such as envelopes and vibrato, while also ensuring that
the program would not be restricted to a specialized form
of musical expression [22, 13:10-17:50]. He repeatedly
stated that his role was that of a scientist rather than a mu-
sician:

When we first made these music programs the
original users were not composers; they were
the psychologist Guttman, John Pierce, and
myself, who are fundamentally scientists. We
wanted to have musicians try the system to
see if they could learn the language and ex-
press themselves with it. So we looked for ad-
venturous musicians and composers who were
willing to experiment. [12, p17]



This clear delineation of roles between musicians and sci-
entists became one of the defining characteristics of post-
MUSIC computer music research. Paradoxically, although
computer music research aimed to create sounds never heard
before, it also paved the way for further research by allow-
ing musicians to focus on composition without having to
understand the cumbersome work of programming.

3.1 Example: Hiding Internal State Variables in
Signal Processing

Although the MUSIC N series shares a common work-
flow of using a score language and an orchestra language,
the actual implementation of each programming language
varies significantly, even within the series.

One notable but often overlooked example is MUSIGOL,
a derivative of MUSIC IV [23]. In MUSIGOL, the sys-
tem, the score and orchestra defined by user were written
entirely as ALGOL 60 language. Similar to today’s Pro-
cessing or Arduino, MUSIGOL is one of the earliest inter-
nal domain-specific languages (DSL) for music; thus, it is
implemented as an library 2. (According to the definition
in this paper, MUSIGOL does not qualify as a language
that uses UGen.)

The level of abstraction deemed intuitive for musicians
varied across different iterations of the MUSIC N series.
This can be illustrated by examining the description of a
second-order band-pass filter. The filter mixes the current
input signal S,,, the output signal from ¢ time steps prior
Oy —t, and an arbitrary amplitude parameter I;, as shown
in the following equation:

On =1I- Sn + 1y On—l - 13 : On—2

In MUSIC V, this band-pass filter can be used as shown in
Listing 1 [25, p.78]. Here, 11 represents the input bus, and
0 is the output bus. The parameters 12 and 13 correspond
to the normalized values of the coefficients I and I3, di-
vided by I (as a result, the overall gain of the filter can be
greater or less than 1). The parameters Pi and P j are nor-
mally used to receive parameters from the score, specifi-
cally among the available P0 to P30. In this case, however,
these parameters are repurposed as general-purpose mem-
ory to temporarily store feedback signals. Similarly, other
UGens, such as oscillators, reuse note parameters to han-
dle operations like phase accumulation. As a result, users
needed to manually calculate feedback gains based on the
desired frequency characteristics®, and they also had to
considder at least two sample memory spaces.

On the other hand, in newer MUSIC 11, and its successor,
Csound, by Barry Vercoe, the band-pass filter is defined
as a UGen named reson. This UGen takes four parame-
ters: the input signal, center cutoff frequency, bandwidth,
and Q factor [26, p248]. Unlike previous implementations,
users no longer need to calculate coefficients manually,
nor do they need to be aware of the two-sample memory
space. However, in MUSIC 11 and Csound, it is possi-
ble to implement this band-pass filter from scratch as a
user-defined opcode (UDO) as shown in Listing 2. Vercoe

2 While MUS 10, used at Stanford University, was not an internal DSL,
it was created by modifying an existing ALGOL parser [24, p.248].

31t is said that a preprocessing feature called CONVT could be used
to transform frequency characteristics into coefficients [25, p77].

emphasized that while signal processing primitives should
allow for low-level operations, such as single-sample feed-
back, and eliminate black boxes, it is equally important to
provide high-level modules that avoid unnecessary com-
plexity (“avoid the clutter”) when users do not need to un-
derstand the internal details [26, p.247].

FLT I1 O I2 I3 Pi Pj;

Listing 1. Example of the use of FLT UGen in MUSIC V.

instr 1
lal init 0
la2 init 0
i3 = exp(-6.28 = p6 / 10000)
i2 = 4x13%co0s(6.283185 % p5/10000) / (1+
i3)
il = (1-i3) = sqgrt(l-1 - i2%xi2/(4%1i3))
al rand p4
la3 = la2
la2 = lal
lal = ilxal + i2 % la2 - i3 * la3
out lal
endin
instr 2
al rand p4
al reson al,p5,p6,1
endin

Listing 2. Example of scratch implementation and built-
in operation of RESON UGen respectively, in MUSIC11.
Retrieved from the original paper. (Comments are omitted
owing to space restriction.)

On the other hand, in succeeding environments that in-
herit the UGen paradigm, such as Pure Data [27], Max
(whose signal processing functionalities were ported from
Pure Data as MSP), SuperCollider [28], and ChucK [29],
primitive UGens are implemented in general-purpose lan-
guages such as C or C++*. If users wish to define low-
level UGens (called external objects in Max and Pd), they
need to set up a development environment for C or C++.

When UGens are implemented in low-level languages like
C, even if the implementation is open-source, the division
of knowledge effectively forces users (composers) to treat
UGens as black boxes. This reliance on UGens as black
boxes reflects and deepens the division of labor between
musicians and scientists that was established in MUSIC,
though it can be interpreted as both a cause and a result.

For example, Puckette, the developer of Max and Pure
Data, notes that the division of labor at IRCAM between
researchers, musical assistants (realizers), and composers
has parallels in the current Max ecosystem, where roles are
divided among Max developers themselves, developers of
external objects, and Max users [31]. As described in the
ethnography of 1980s IRCAM by anthropologist Georgina
Born, the division of labor between fundamental research
scientists and composers at IRCAM was extremely clear.

4 ChucK later introduced ChuGen, which is similar extension to
Csound’s UDO, allowing users to define UGens within the ChucK lan-
guage itself [30]. However, not all existing UGens are replaced by UDOs
by default both in Csound and ChucK, which remain supplemental fea-
tures possibly because the runtime performance of UDO is inferior to
natively implemented UGens.




This structure was also tied to the exclusion of popular mu-
sic and its associated technologies from IRCAM’s research
focus [32].

However, such divisions are not necessarily the result of
differences in values along the axes analyzed by Born, such
as modernist/postmodernist/populist or low-tech/high-tech
distinctions ® . This is because the black-boxing of technol-
ogy through the division of knowledge occurs in popular
music as well. Paul Théberge pointed out that the “de-
mocratization” of synthesizers in the 1980s was achieved
through the concealment of technology, which transformed
musicians as creators into consumers.

Lacking adequate knowledge of the technical
system, musicians increasingly found them-
selves drawn to prefabricated programs as a
source of new sound material. (... )it also sug-
gests a reconceptualization on the part of the
industry of the musician as a particular type of
consumer. [34, p.89]

This argument can be extended beyond electronic music
to encompass computer-based music in general. For ex-
ample, media researcher Lori Emerson noted that although
the proliferation of personal computers began with the vi-
sion of a “metamedium”—tools that users could modify
themselves, as exemplified by Xerox PARC’s Dynabook—
the vision was ultimately realized in an incomplete form
through devices such as the Macintosh and iPad, which dis-
tanced users from programming by black-boxing function-
ality [35]. In fact, Alan Kay, the architect behind the Dyn-
abook concept, remarked that while the iPad’s appearance
may resemble the ideal he originally envisioned, its lack
of extensibility through programming rendered it merely a
device for media consumption [36].

Musicians have attempted to resist the consumeristic use
of those tools through appropriation and exploitation [37].
Howeyver, just as circuit bending has been narrowed down
to its potential by a literal black box - one big closed IC of
aggregated functions [38, p225], and glitching has shifted

from methodology to a superficial auditory style [?], capitalism-

based technology expands in a direction that prevents users
from misusing it. Under these circumstances, designing a
new programming language does not merely provide mu-
sicians with the means to create new music, but is itself
contextualized as a musicking practice following hacking,
an active reconstruction of the technological infrastructure
that is allowed to be hacked.

4. CONTEXT OF PROGRAMMING LANGUAGES
FOR MUSIC AFTER 2000

Under this premise, music programming languages devel-
oped after the 2000s can be categorized into two distinct di-
rections: those that narrow the scope of the language’s role
by introducing alternative abstractions at a higher-level,
distinct from the UGen paradigm, and those that expand
the general-purpose capabilities of the language, reducing
black-boxing.

5 David Wessel revealed that the individual referred to as RIG in Born’s
ethnography was himself and commented that Born oversimplified her
portrayal of Pierre Boulez, then director of IRCAM, as a modernist. [33]

Languages that pursued alternative higher-level abstrac-
tions have evolved alongside the culture of live coding,
where performances are conducted by rewriting code in
real time. The activities of the live coding community, in-
cluding groups, such as TOPLAP, since the 2000s, were
not only about turning coding itself into a performance but
also served as a resistance against laptop performances that
relied on black-boxed music software. This is evident in
the community’s manifesto, which states, “Obscurantism
is dangerous” [39].

Languages implemented as clients for SuperCollider, such
as IXI (on Ruby) [40], Sonic Pi (on Ruby), Overtone
(on Clojure) [41], TidalCycles (on Haskell) [42], and
FoxDot (on Python) [43], leverage the expressive power
of more general-purpose programming languages. While
embracing the UGen paradigm, they enable high-level ab-
stractions for previously difficult-to-express elements like
note values and rhythm. For example, the abstraction of
patterns in TidalCycles is not limited to music but can also
be applied to visual patterns and other outputs, meaning it
is not inherently tied to PCM-based waveform output as
the final result.

On the other hand, owing to their high-level design, these
languages often rely on ad-hoc implementations for tasks
like sound manipulation and low-level signal processing,
such as effects. McCartney, the developer of SuperCol-
lider, stated that if general-purpose programming languages
were sufficiently expressive, there would be no need to cre-
ate specialized languages [1], which appears reasonable
when considering examples like MUSIGOL. However, in
practice, scripting languages that excel in dynamic pro-
gram modification face challenges in modern preemptive
operating system (OS) environments. For instance, dy-
namic memory management techniques such as garbage
collection can hinder deterministic execution timing required
for real-time processing [44].

Historically, programming languages, such as FORTRAN
or C, served as a portable way for implementing programs
across different architectures. However, with the prolif-
eration of higher-level languages, programming in C or
C++ has become relatively more difficult, akin to assem-
bly language in earlier times. Furthermore, considering the
challenges of portability not only across different CPUs
but also diverse host environments such as OSs and the
Web, these languages are no longer as portable as they
once were. Consequently, internal DSL for music, includ-
ing signal processing, have become exceedingly rare, with
only a few examples such as LuaAV [45].

Instead, an approach has emerged to create general-purpose
languages specifically designed for use in music from the
ground up. One prominent example is Extempore, a live
programming environment developed by Sorensen [46].
Extempore consists of Scheme, a Lisp-based language, and
xtlang, a meta-implementation on top of Scheme. While
xtlang requires users to write hardware-oriented type sig-
natures similar to those in C, it leverages the compiler in-
frastructure, LLVM [47], to just-in-time (JIT) compile sig-
nal processing code, including sound manipulation, into
machine code for high-speed execution.

The expressive power of general-purpose languages and
compiler infrastructures, such as LLVM, has given rise to
an approach focused on designing languages with math-



ematical formalization that reduces black-boxing. Faust
[48], for instance, is a language that retains a graph-based
structure akin to UGens but is built on a formal system
called Block Diagram Algebra. Thanks to its formaliza-
tion, Faust can be transpiled into various low-level lan-
guages, such as C, C++, or Rust, and can also be used as
external objects in Max or Pure Data.

Languages like Kronos [49] and mimium [50], which

are based on the more general computational model of lambda

calculus, focus on PCM-based signal processing while ex-
ploring interactive meta-operations on programs [51] and

balancing self-contained semantics with interoperability with

other general-purpose languages [52].

DSLs are constructed within a double bind; they aim to
specialize in a particular purpose while still providing a
certain degree of expressive freedom through coding. In
this context, efforts like Extempore, Kronos, and mimium
are not merely programming languages for music but are
also situated within the broader research context of func-
tional reactive programming, which focuses on represent-
ing time-varying values in computation. Most computing
models lack an inherent concept of real-time, operating
instead based on discrete computational steps. Similarly,
low-level general-purpose programming languages do not
natively include primitives for real-time concepts. Conse-
quently, the exploration of computational models tied to
time —a domain inseparable from music— remains vital
and has the potential to contribute to the theoretical foun-
dations of general-purpose programming languages.

However, strongly formalized languages come with an-
other trade-off. Although they allow UGens to be defined
without black-boxing, understanding the design and imple-
mentation of these languages often requires expert knowl-
edge. This can create a deeper division between language
developers and users, in contrast to the many but small
and shallow divisions seen in the multi-language paradigm,
such as SuperCollider developers, external UGen develop-
ers, client language developers (e.g., TidalCycles), Super-
Collider users, and client language users.

Although there is no clear solution to this trade-off, one
intriguing idea is the development of self-hosting languages
for music—that is, languages whose compilers are written
in the language itself. At first glance, this may seem im-
practical. However, by enabling users to learn and modify
the language’s mechanisms spontaneously, this approach
could create an environment that fosters deeper engage-
ment and understanding among users.

S. CONCLUSION

This paper has reexamined the history of computer music
and music programming languages with a focus on the uni-
versalism of PCM and the black-boxing tendencies of the
UGen paradigm. Historically, it was expected that the clear
division of roles between engineers and composers would
enable the creation of new forms of expression using com-
puters. Indeed, from the perspective of post-acousmatic
discourse, some scholars, such as Holbrook and Rudi, still
consider this division to be a positive development:

Most newer tools abstract the signal process-
ing routines and variables, making them eas-

ier to use while removing the need for under-
standing the underlying processes in order to
create meaningful results. Composers no longer
necessarily need mathematical and program-
ming skills to use the technologies. [10, p2]

However, this division of labor also creates a shared vo-
cabulary (as exemplified in the UGen by Mathews) and
serves to perpetuate it. By portraying new technologies as
something externally introduced, and by focusing on the
agency of those who create music with computers, the in-
dividuals responsible for building programming environ-
ments, software, protocols, and formats are rendered invis-
ible [53]. This leads to an oversight of the indirect power
relationships produced by these infrastructures.

For this reason, future research on programming languages
for music must address how the tools, including the lan-
guages themselves, contribute aesthetic value within mu-
sical culture (and what forms of musical practice they en-
able), as well as the social (im)balances of power they pro-
duce.

The academic value of the research on programming lan-
guages for music is often vaguely asserted, using terms
such as “general,” “expressive,” and “efficient.” However,
it is difficult to argue these claims when processing speed is
no longer the primary concern. Thus, as with idiomaticity
[3] by McPherson et al., we need to develop and share a vo-
cabulary for understanding the value judgments we make
about music languages.

In a broader sense, the development of programming lan-
guages for music has also expanded to the individual level.
Examples include Gwion by Astor, which is inspired by
ChucK and enhances its abstraction through features, such
as lambda functions [54]; Vult, a DSP transpiler language
created by Ruiz for his modular synthesizer hardware [55];
and a UGen-based live coding environment designed for
web, Glicol [56]. However, these efforts have not yet been
incorporated into academic discourse.

Conversely, practical knowledge of past languages in 1960s,
as well as real-time hardware-oriented systems from the
1980s, is gradually being lost. Although research efforts
such as Inside Computer Music, which analyzes historical
works of computer music, have begun [57], an archaeo-
logical practice focused on the construction of computer
music systems themselves will also be necessary.
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